Skip to main content
Log in

Transit and lifespan in neutrophil production: implications for drug intervention

Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

A comparison of the transit compartment ordinary differential equation modelling approach to distributed and discrete delay differential equation models is studied by focusing on Quartino’s extension to the Friberg transit compartment model of myelosuppression, widely relied upon in the pharmaceutical sciences to predict the neutrophil response after chemotherapy, and on a QSP delay differential equation model of granulopoiesis. An extension to the Quartino model is provided by considering a general number of transit compartments and introducing an extra parameter that allows for the decoupling of the maturation time from the production rate of cells. An overview of the well established linear chain technique, used to reformulate transit compartment models with constant transit rates as distributed delay differential equations (DDEs), is then given. A state-dependent time rescaling of the Quartino model is performed to apply the linear chain technique and rewrite the Quartino model as a distributed DDE, yielding a discrete DDE model in a certain parameter limit. Next, stability and bifurcation analyses are undertaken in an effort to situate such studies in a mathematical pharmacology context. We show that both the original Friberg and the Quartino extension models incorrectly define the mean maturation time, essentially treating the proliferative pool as an additional maturation compartment. This misspecification can have far reaching consequences on the development of future models of myelosuppression in PK/PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Figure reproduced from: Craig [12] with the permission of Wiley (Color figure online)

Fig. 2

Figure reproduced from: Quartino et al. [38, p. 3396] with the permission of Springer

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Adimy M, Crauste F (2007) Modelling and asymptotic stability of a growth factor-dependent stem cells dynamics model with distributed delay. Discret Contin Dyn Syst Ser B 8(1):19–38

    Article  Google Scholar 

  2. Agoram B, Woltosz W, Bolger M (2001) Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv Drug Deliv Rev 50:S41–S67

    Article  CAS  PubMed  Google Scholar 

  3. Bélair J, Rimbu A (2015) Time delays in drug administration: effect, transit, tricks and oscillations. IFAC PapersOnLine 48(12):111–116

    Article  Google Scholar 

  4. Beretta E, Breda D (2016) Discrete or distributed delay? effects on stability of population growth. Math Biosci Eng 13(1):19–41

    Article  PubMed  Google Scholar 

  5. Brooks G, Langlois G, Lei J, Mackey M (2012) Neutrophil dynamics after chemotherapy and G-CSF: the role of pharmacokinetics in shaping the response. J Theor Biol 315:97–109

    Article  CAS  PubMed  Google Scholar 

  6. Bruno R, Vivier N, Vergniol J, De Phillips S, Montay G, Sheiner L (1996) A population pharmacokinetic model for docetaxel (taxotere®): model building and validation. J Pharmacokinet Biopharm 24:153–172

    Article  CAS  PubMed  Google Scholar 

  7. Campbell S, Jessop R (2009) Approximating the stability region for a differential equation with a distributed delay. Math Models Nat Phenom 4(2):1–27

    Article  Google Scholar 

  8. Christopher M, Link D (2007) Regulation of neutrophil homeostasis. Curr Opin Hematol 14:3–8

    Article  CAS  PubMed  Google Scholar 

  9. Colijn C, Mackey M (2005) A mathematical model of hematopoiesis: II. Cyclical neutropenia. J Theor Biol 237:133–146

    Article  PubMed  Google Scholar 

  10. Cooke K, Grossman Z (1982) Discrete delay, distributed delay and stability switches. J Math Anal Appl 86:592–627

    Article  Google Scholar 

  11. Cooke K, Hang W (1996) On the problem of linearization for state-dependent delay differential equations. Proc AMS 124(5):1417–1426

    Article  Google Scholar 

  12. Craig M (2017) Towards quantitative systems pharmacology models of chemotherapy-induced neutropenia. CPT Pharmacomet Syst Pharmacol 6(5):293–304

    Article  CAS  Google Scholar 

  13. Craig M, Humphries A, Mackey M (2016) A mathematical model of granulopoiesis incorporating the negative feedback dynamics and kinetics of G-CSF/neutrophil binding and internalisation. Bull Math Biol 78(12):2304–2357

    Article  CAS  PubMed  Google Scholar 

  14. Dale D, Mackey M (2015) Understanding, treating and avoiding hematological disease: better medicine through mathematics? Bull Math Biol 77:739–757

    Article  PubMed  Google Scholar 

  15. Dancey J, Deubelbeiss K, Harker L, Finch C (1976) Neutrophil kinetics in man. J Clin Investig 58:705–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dixit N, Perelson A (2004) Complex patterns of viral load decay under antiretroviral therapy: influence of pharmacokinetics and intracellular delay. J Theor Biol 226:95–109

    Article  CAS  PubMed  Google Scholar 

  17. Foley C, Mackey M (2008) Mathematical model for G-CSF administration after chemotherapy. J Theor Biol 257:27–44

    Article  PubMed  Google Scholar 

  18. Foley C, Mackey M (2009) Dynamic hematological disease: a review. J Math Biol 58:285–322

    Article  PubMed  Google Scholar 

  19. Friberg L, Karlsson M (2003) Mechanistic models for myelosuppression. Investig New Drugs 21:183–194

    Article  CAS  Google Scholar 

  20. Friberg L, Henningsson A, Maas H, Nguyen L, Karlsson M (2002) Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. J Clin Oncol 20:4713–4721

    Article  PubMed  Google Scholar 

  21. Goudriaan J, Gurney WSC, Nisbet RM, Blythe SP (1986) Numerical approaches. In: Metz JAJ, Diekmann O (eds) The dynamics of physiologically structured populations. Springer, Berlin, pp 452–494

    Chapter  Google Scholar 

  22. Gruber M, Fleiss K, Porpaczy E et al (2011) Prolonged progression-free survival in patients with chronic lymphocytic leukemia receiving granulocyte colony-stimulating factor during treatment with fludarabine, cyclophosphamide, and rituximab. Ann Hematol 90:1131–1136

    Article  CAS  PubMed  Google Scholar 

  23. Hearn T, Haurie C, Mackey M (1998) Cyclical neutropenia and the peripherial control of white blood cell production. J Theor Biol 192:167–181

    Article  CAS  PubMed  Google Scholar 

  24. Jacquez JA, Simon CP (2002) Qualitative theory of compartmental systems with lags. Math Biosci 180(1–2):329–362

    Article  PubMed  Google Scholar 

  25. Jamei M, Turner D, Yang J, Neuhoff S, Polak S, Rostami-Hodjegan A, Tucker G (2009) Population-based mechanistic prediction of oral drug absorption. AAPS J 11(2):225–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Krinner A, Roeder I, Loeffler M, Scholz M (2013) Merging concepts—coupling an agent-based model of hematopoietic stem cells with an ODE model of granulopoiesis. BMC Syst Biol 7:117

    Article  PubMed  PubMed Central  Google Scholar 

  27. Krzyzanski W (2011) Interpretation of transit compartments pharmacodynamic models as lifespan based indirect response models. J Pharmacokinet Pharmacodyn 38:179–204

    Article  PubMed  Google Scholar 

  28. Lyman G, Dale D (2011) Introduction to the hematopoietic growth factors. In: Lyman GH, Dale DC (eds) Hematopoietic growth factors in oncology. Springer, Berlin

    Chapter  Google Scholar 

  29. MacDonald N (1978) Time lags in biological models. Springer, Berlin

    Book  Google Scholar 

  30. MacDonald N (1989) Biological delay systems: linear stability theory. Cambridge University Press, Cambridge

    Google Scholar 

  31. Mackey M, Milton J (1990) Feedback, delays, and the origin of blood cell dynamics. Comments Theor Biol 1:299–327

    Google Scholar 

  32. Mantovani A, Cassatella MA, Costantini C, Jaillon S (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11:519–531

    Article  CAS  PubMed  Google Scholar 

  33. Mathworks (2013) MATLAB 2016b. Mathworks, Natick, Massachusetts

  34. Meiss J (2007) Differential dynamical systems. Society for Industrial and Applied Mathematics, Philadelphia, PA

  35. Price T, Chatta G, Dale D (1996) Effect of recombinant granulocyte colony-stimulating factor on neutrophil kinetics in normal young and elderly humans. Blood 88:335–340

    CAS  PubMed  Google Scholar 

  36. Pujo-Menjouet L (2016) Blood cell dynamics: half of a century of modelling. Math Model Nat Phenom 11(1):92–115

    Article  Google Scholar 

  37. Quartino A, Friberg L, Karlsson M (2012) A simultaneous analysis of the time-course of leukocytes and neutrophils following docetaxel administration using a semi-mechanisitic myelosuppression model. Investig New Drugs 30:833–845

    Article  CAS  Google Scholar 

  38. Quartino A, Karlsson M, Lindman H, Friberg L (2014) Characterization of endogenous G-CSF and the inverse correlation to chemotherapy-induced neutropenia in patients with breast cancer using population modeling. Pharm Res 31(12):3390–3403

    Article  CAS  PubMed  Google Scholar 

  39. Rankin S (2010) The bone marrow: a site of neutrophil clearance. J Leukoc Biol 88:241–251

    Article  CAS  PubMed  Google Scholar 

  40. Schirm S, Engel C, Loeffler M, Scholz M (2014) Modelling chemotherapy effects on granulopoiesis. BMC Syst Biol 8:138

    Article  PubMed  PubMed Central  Google Scholar 

  41. Smith H (2011) An introduction to delay differential equations with applications to the life sciences. Springer, New York

    Book  Google Scholar 

  42. Steimer JL, Plusquellec Y, Guillaume A, Boivieux JF (1982) A time-lag model for pharmacokinetics of drugs subject to enterohepatic circulation. J Pharm Sci 71(3):297–302

    Article  CAS  PubMed  Google Scholar 

  43. Sternberg C, de Mulder P et al (2006) Seven year update of an EORTC phase III trial of high-dose intensity M-VAC and G-CSF versus classic M-VAC in advanced urothelial tract tumours. Eur J Cancer 42:50–54

    Article  CAS  PubMed  Google Scholar 

  44. Vainstein V, Ginosar Y, Shoham M, Ranmar D, Ianovski A, Agur Z (2005) The complex effect of granulocyte colony-stimulating factor on human granulopoiesis analyzed by a new physiologically-based mathematical model. J Theor Biol 235:311–327

    Article  Google Scholar 

  45. van der Graaf PH, Benson N, Peletier LA (2016) Topics in mathematical pharmacology. J Dyn Differ Equ 28(3):1337–1356

    Article  Google Scholar 

  46. Vogel T (1963) Systèmes déferlants, systèmes héréditaires, systèmes dynamiques. In: Proceedings of the international symposium nonlinear vibrations, IUTAM, Kiev, 1961, Academy of Sciences USSR, pp 123–130

  47. Vogel T (1965) Théorie des Systèmes Evolutifs. Gautier Villars, Paris

    Google Scholar 

  48. von Vietinghoff S, Ley K (2008) Homeostatic regulation of blood neutrophil counts. J Immunol 181:5183–5188

    Article  Google Scholar 

  49. Ward AC, Aesch YMV, Gits J, Schelen AM, Koning JPD, Leeuwen DV, Freedman MH, Touw IP (1999) Novel point mutation in the extracellular domain of the granulocy colony-stimulating factore (G-CSF) receptor in a case of severe congenital neutropenia hyporesponsive to G-CSF treatment. J Exp Med 190(4):497–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

DCS was supported by National Council for Scientific and Technological Development of Brazil (CNPq) postdoctoral fellowship 201105/2014-4. MC was supported by an Natural Sciences and Engineering Research Council of Canada (NSERC) postdoctoral fellowship and Grant DP5OD019851 from the Office of the Director at the National Institutes of Health to her PI. TC was supported by the Alberta government via the Sir James Lougheed Award of Distinction as well as the Centre de recherches mathématiques, Montréal. FN and JL are funded by FN’s NSERC Industrial Chair in Pharmacometrics, supported by Novartis, Pfizer, and inVentiv Health Clinics, and an FrQNT projet d’équipe. JB and ARH are grateful to NSERC, Canada for funding through the Discovery Grant program. We are appreciative for our many very useful discussions with Michael C. Mackey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morgan Craig.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 487 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Câmara De Souza, D., Craig, M., Cassidy, T. et al. Transit and lifespan in neutrophil production: implications for drug intervention. J Pharmacokinet Pharmacodyn 45, 59–77 (2018). https://doi.org/10.1007/s10928-017-9560-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-017-9560-y

Keywords

Navigation