Skip to main content

Advertisement

Log in

Pharmacometrics models with hidden Markovian dynamics

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

The aim of this paper is to provide an overview of pharmacometric models that involve some latent process with Markovian dynamics. Such models include hidden Markov models which may be useful for describing the dynamics of a disease state that jumps from one state to another at discrete times. On the contrary, diffusion models are continuous-time and continuous-state Markov models that are relevant for modelling non observed phenomena that fluctuate continuously and randomly over time. We show that an extension of these models to mixed effects models is straightforward in a population context. We then show how the forward–backward algorithm used for inference in hidden Markov models and the extended Kalman filter used for inference in diffusion models can be combined with standard inference algorithms in mixed effects models for estimating the parameters of the model. The use of these models is illustrated with two applications: a hidden Markov model for describing the epileptic activity of a large number of patients and a stochastic differential equation based model for describing the pharmacokinetics of theophyllin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Albert PS (1991) A two state Markov mixture model for a time series of epileptic seizure counts. Biometrics 47(4):1371–1381

    Article  CAS  PubMed  Google Scholar 

  2. Altman RM (2007) Mixed hidden Markov models: an extension of the hidden Markov model to the longitudinal data setting. J Am Stat Assoc 102(477):201–210

    Article  CAS  Google Scholar 

  3. Anisimov VV, Maas HJ, Danhof M, Della Pasqua O (2007) Analysis of responses in migraine modelling using hidden Markov models. Stat Med 26(22):4163–4178

    Article  PubMed  Google Scholar 

  4. Bauer RJ. Hidden Markov model analysis with NONMEM. https://nonmem.iconplc.com/nonmem/hmm/readme_hmm.pdf

  5. Berglund M, Sunnåker M, Adiels M, Jirstrand M, Wennberg B (2011) Investigations of a compartmental model for leucine kinetics using non-linear mixed effects models with ordinary and stochastic differential equations. Math Med Biol, dqr021

  6. Cappé O, Moulines E, Rydén T (2005) Inference in hidden Markov models. Springer, New York

    Google Scholar 

  7. Delattre M, Lavielle M (2012) Maximum likelihood estimation in discrete mixed hidden Markov models using the SAEM algorithm. Comput Stat Data Anal 56(6):2073–2085

    Article  Google Scholar 

  8. Delattre M, Lavielle M (2013) Coupling the SAEM algorithm and the extended Kalman filter for maximum likelihood estimation in mixed-effects diffusion models. Stat Interfaces 6(4):519–532

    Article  Google Scholar 

  9. Delattre M, Savic RM, Miller R, Karlsson MO, Lavielle M (2012) Analysis of exposure-response of CI-945 in patients with epilepsy: application of novel mixed hidden Markov modeling methodology. J Pharmacokinet Pharmacodyn 39(3):263–271

    Article  PubMed  Google Scholar 

  10. Deng C, Plan EL, Karlsson MO (2016) Approaches for modeling within subject variability in pharmacometric count data analysis: dynamic inter-occasion variability and stochastic differential equations. J Pharmacokinet Pharmacodyn 43(3):305–314

    Article  PubMed  Google Scholar 

  11. Diack C, Ackaert O, Ploeger B, van der Graaf P, Gurrell R, Ivarsson M, Fairman D (2011) A hidden Markov model to assess drug-induced sleep fragmentation in the telemetered rat. J Pharmacokinet Pharmacodyn 38(6):697–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ditlevsen S, De Gaetano A (2005) Stochastic vs. deterministic uptake of dodecanedioic acid by isolated rat livers. Bull Math Biol 67(3):547–561

    Article  CAS  PubMed  Google Scholar 

  13. Donnet S, Samson A (2008) Parametric inference for mixed models defined by stochastic differential equations. ESAIM 12:196–218

    Article  Google Scholar 

  14. Donnet S, Samson A (2011) EM algorithm coupled with particle filter for maximum likelihood parameter estimation of stochastic differential mixed-effects models. https://hal.archives-ouvertes.fr/hal-00519576. Working paper or preprint

  15. Donnet S, Samson A (2013) A review on estimation of stochastic differential equations for pharmacokinetic/pharmacodynamic models. Adv Drug Deliv Rev 65(7):929–939

    Article  CAS  PubMed  Google Scholar 

  16. Favetto B, Samson A (2010) Parameter estimation for a bidimensional partially observed Ornstein–Uhlenbeck process with biological application. Scand J Stat 37(2):200–220

    Article  Google Scholar 

  17. Ferrante L, Bompadre S, Leone L (2003) A stochastic compartmental model with long lasting infusion. Biom J 45(2):182–194

    Article  Google Scholar 

  18. Grewal MS, Andrews AP (2011) Kalman filtering: theory and practice using MATLAB. Wiley, New York

    Book  Google Scholar 

  19. Hamilton JD (1994) Time series analysis, vol 2. Princeton University Press, Princeton

    Google Scholar 

  20. Itô K (1974) Diffusion processes. Wiley Online Library

  21. Klim S, Mortensen SB, Kristensen NR, Overgaard RV, Madsen H (2009) Population stochastic modelling (PSM)—an R package for mixed-effects models based on stochastic differential equations. Comput Methods Programs Biomed 94(3):279–289

    Article  PubMed  Google Scholar 

  22. Kristensen NR, Madsen H, Ingwersen SH (2005) Using stochastic differential equations for PK/PD model development. J Pharmacokinet Pharmacodyn 32(1):109–141

    Article  PubMed  Google Scholar 

  23. Lavielle M (2014) Mixed effects models for the population approach: models, tasks, methods and tools. CRC biostatistics series. Chapman & Hall, Boca Raton

    Google Scholar 

  24. Le Cam S, Louis-Dorr V, Maillard L (2013) Hidden Markov chain modeling for epileptic networks identification. In: Engineering in medicine and biology society (EMBC), 2013 35th annual international conference of the IEEE, pp 4354–4357. IEEE

  25. Leander J, Almquist J, Ahlström C, Gabrielsson J, Jirstrand M (2015) Mixed effects modeling using stochastic differential equations: illustrated by pharmacokinetic data of nicotinic acid in obese Zucker rats. AAPS J 17(3):586–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maas H, Danhof M, Pasqua OD (2006) Prediction of headache response in migraine treatment. Cephalalgia 26(4):416–422

    Article  CAS  PubMed  Google Scholar 

  27. Mazzoni T (2008) Computational aspects of continuous-discrete extended Kalman-filtering. Comput Stat 23(4):519–539

    Article  Google Scholar 

  28. Meyn S, Tweedie RL (2009) Markov chains and stochastic stability. Cambridge University Press, Cambridge

    Book  Google Scholar 

  29. O’Connell J, Højsgaard S et al (2011) Hidden semi Markov models for multiple observation sequences: the mhsmm package for R. J Stat Softw 39(4):1–22

    Google Scholar 

  30. Oksendal B (2013) Stochastic differential equations: an introduction with applications. Springer Science & Business Media, Berlin

    Google Scholar 

  31. Overgaard R, Jonsson N, Tornøe C, Madsen H (2005) Non-linear mixed-effects models with stochastic differential equations: implementation of an estimation algorithm. J Pharmacokinet Pharmacodyn 32(1):85–107

    Article  PubMed  Google Scholar 

  32. Picchini U, Ditlevsen S (2011) Practical estimation of high dimensional stochastic differential mixed-effects models. Comput Stat Data Anal 55(3):1426–1444

    Article  Google Scholar 

  33. Picchini U, Ditlevsen S, De Gaetano A (2006) Modeling the euglycemic hyperinsulinemic clamp by stochastic differential equations. J Math Biol 53(5):771–796

    Article  PubMed  Google Scholar 

  34. Picchini U, Gaetano A, Ditlevsen S (2010) Stochastic differential mixed-effects models. Scand J Stat 37(1):67–90

    Article  Google Scholar 

  35. Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77(2):257–286

    Article  Google Scholar 

  36. Ramanathan M (1999) An application of Ito’s lemma in population pharmacokinetics and pharmacodynamics. Pharm Res 16(4):584–586

    Article  CAS  PubMed  Google Scholar 

  37. Tornøe CW, Overgaard RV, Agersø H, Nielsen HA, Madsen H, Jonsson EN (2005) Stochastic differential equations in NONMEM®: implementation, application, and comparison with ordinary differential equations. Pharm Res 22(8):1247–1258

    Article  PubMed  Google Scholar 

  38. Trocóniz IF, Plan EL, Miller R, Karlsson MO (2009) Modelling overdispersion and Markovian features in count data. J Pharmacokinet Pharmacodyn 36(5):461

    Article  PubMed  Google Scholar 

  39. Wang Y (2007) Derivation of various NONMEM estimation methods. J Pharmacokinet Pharmacodyn 34(5):575–593

    Article  PubMed  Google Scholar 

  40. Zechner C, Unger M, Pelet S, Peter M, Koeppl H (2014) Scalable inference of heterogeneous reaction kinetics from pooled single-cell recordings. Nat Methods 11:197–202

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Lavielle.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 1755 KB)

Supplementary material 2 (zip 219 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavielle, M. Pharmacometrics models with hidden Markovian dynamics. J Pharmacokinet Pharmacodyn 45, 91–105 (2018). https://doi.org/10.1007/s10928-017-9541-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-017-9541-1

Keywords

Navigation