Target mediated drug disposition with drug–drug interaction, Part II: competitive and uncompetitive cases

  • Gilbert Koch
  • William J. Jusko
  • Johannes Schropp
Original Paper

Abstract

We present competitive and uncompetitive drug–drug interaction (DDI) with target mediated drug disposition (TMDD) equations and investigate their pharmacokinetic DDI properties. For application of TMDD models, quasi-equilibrium (QE) or quasi-steady state (QSS) approximations are necessary to reduce the number of parameters. To realize those approximations of DDI TMDD models, we derive an ordinary differential equation (ODE) representation formulated in free concentration and free receptor variables. This ODE formulation can be straightforward implemented in typical PKPD software without solving any non-linear equation system arising from the QE or QSS approximation of the rapid binding assumptions. This manuscript is the second in a series to introduce and investigate DDI TMDD models and to apply the QE or QSS approximation.

Keywords

Drug–drug interaction Target-mediated drug disposition Competitive Uncompetitive 

Supplementary material

10928_2016_9502_MOESM1_ESM.docx (43 kb)
Supplementary material 1 (docx 42 KB)
10928_2016_9502_MOESM2_ESM.docx (25 kb)
Supplementary material 2 (docx 25 KB)

References

  1. 1.
    Ariëns EJ, Van Rossum JM, Simonis AM (1957) Affinity, intrinsic activity and drug interactions. Pharmacol Rev 9(2):218–236PubMedGoogle Scholar
  2. 2.
    Banks HT (1975) Modeling and control in biomedical sciences, lecture notes in biomathematics. Springer, BerlinCrossRefGoogle Scholar
  3. 3.
    Koch G, Schropp J, Jusko WJ (2016) Assessment of non-linear combination effect terms for drug–drug interactions. J Pharmacokinet Pharmacodyn 43(5):461–479CrossRefPubMedGoogle Scholar
  4. 4.
    Levy G (1994) Pharmacologic target-mediated drug disposition. Clin Pharmacol Ther 56(3):248–252CrossRefPubMedGoogle Scholar
  5. 5.
    Mager DE, Jusko WJ (2001) General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn 28(6):507–532CrossRefPubMedGoogle Scholar
  6. 6.
    Koch G, Jusko WJ, Schropp J (2017) Target mediated drug disposition with drug–drug interaction, Part I: single drug case in alternative formulations. J Pharmacokinet Pharmacodyn. doi:10.1007/s10928-016-9501-1
  7. 7.
    Mager DE, Krzyzanski W (2005) Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition. Pharm Res 22(10):1589–1596CrossRefPubMedGoogle Scholar
  8. 8.
    Gibiansky L, Gibiansky E, Kakkar T, Ma P (2008) Approximations of the target-mediated drug disposition model and identifiability of model parameters. J Pharmacokinet Pharmacodyn 35(5):573–591CrossRefPubMedGoogle Scholar
  9. 9.
    Yan X, Chen Y, Krzyzanski W (2012) Methods of solving rapid binding target-mediated drug disposition model for two drugs competing for the same receptor. J Pharmacokinet Pharmacodyn 39(5):543–560CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Copland RA (2005) Evaluation of enzyme inhibitors in drug discovery, A guide for medicinal chemists and pharmacologists. Wiley, HobokenGoogle Scholar
  11. 11.
    Peletier LA, Gabrielsson J (2012) Dynamics of target-mediated drug disposition: characteristic profiles and parameter identification. J Pharmacokinet Pharmacodyn 39(5):429–451CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Peletier LA, Gabrielsson J (2013) Dynamics of target-mediated drug disposition: how a drug reaches its target. Comput Geosci 17:599–608CrossRefGoogle Scholar
  13. 13.
    Lipton SA (2006) Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat Rev Drug Discov 5(2):160–170CrossRefPubMedGoogle Scholar
  14. 14.
    Fenichel N (1979) Geometric singular perturbation theory for ordinary differential equations. J Diff Equ 31:54–98CrossRefGoogle Scholar
  15. 15.
    Vasileva AB (1963) Asymptotic behaviour of solutions to certain problems involving nonlinear differential equations containing a small parameter multiplying the highest derivatives. Russ Math Surv 18:13–83CrossRefGoogle Scholar
  16. 16.
    D’Argenio DZ, Schumitzky A, Wang X (2009) ADAPT 5 user’s guide: pharmacokinetic / pharmacodynamic systems analysis software. Biomedical Simulations Resource, Los AngelesGoogle Scholar
  17. 17.
    Beal S, Sheiner LB, Boeckmann A, Bauer RJ (2009) NONMEM user’s guides. Icon Development Solutions, Ellicott CityGoogle Scholar
  18. 18.
    R Core Team (2014) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. http://www.R-project.org/
  19. 19.
    MATLAB Release (2014b) The MathWorks. Inc, MathWorks, NatickGoogle Scholar
  20. 20.
    Brenan KE, Campbell SL, Petzold LR (1996) Numerical solution of initial value problems in differential-algebraic equations. Classics in Applied Mathematics, 14 SIAMGoogle Scholar
  21. 21.
    Nahorski SR, Ragan CI, Challiss RA (1991) Lithium and the phosphoinositide cycle: an example of uncompetitive inhibition and its pharmacological consequences. Trends Pharmacol Sci 12(8):297–303CrossRefPubMedGoogle Scholar
  22. 22.
    Cornish-Bowden A (1986) Why is uncompetitive inhibition so rare? A possible explanation, with implications for the design of drugs and pesticides. FEBS Lett 203(1):3–6CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Gilbert Koch
    • 1
  • William J. Jusko
    • 2
  • Johannes Schropp
    • 3
  1. 1.Pediatric Pharmacology and PharmacometricsUniversity of Basel, Children’s Hospital (UKBB)BaselSwitzerland
  2. 2.Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical SciencesState University of New York at BuffaloBuffaloUSA
  3. 3.Department of Mathematics and StatisticsUniversity of KonstanzKonstanzGermany

Personalised recommendations