Target-mediated drug disposition with drug–drug interaction, Part I: single drug case in alternative formulations

  • Gilbert Koch
  • William J. Jusko
  • Johannes Schropp
Original Paper

Abstract

Target-mediated drug disposition (TMDD) describes drug binding with high affinity to a target such as a receptor. In application TMDD models are often over-parameterized and quasi-equilibrium (QE) or quasi-steady state (QSS) approximations are essential to reduce the number of parameters. However, implementation of such approximations becomes difficult for TMDD models with drug–drug interaction (DDI) mechanisms. Hence, alternative but equivalent formulations are necessary for QE or QSS approximations. To introduce and develop such formulations, the single drug case is reanalyzed. This work opens the route for straightforward implementation of QE or QSS approximations of DDI TMDD models. The manuscript is the first part to introduce DDI TMDD models with QE or QSS approximations.

Keywords

Drug–drug interaction Target-mediated drug disposition Competitive Uncompetitive 

Supplementary material

References

  1. 1.
    Levy G (1994) Pharmacologic target-mediated drug disposition. Clin Pharmacol Ther 56(3):248–252CrossRefPubMedGoogle Scholar
  2. 2.
    Mager DE, Jusko WJ (2001) General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn 28(6):507–532CrossRefPubMedGoogle Scholar
  3. 3.
    Mager DE, Krzyzanski W (2005) Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition. Pharm Res 22(10):1589–1596CrossRefPubMedGoogle Scholar
  4. 4.
    Dua P, Hawkins E, van der Graaf PH (2015) A tutorial on target-mediated drug disposition (TMDD) models. CPT Pharmacomet Syst Pharmacol 4(6):324–337CrossRefGoogle Scholar
  5. 5.
    An G (2016) Small-molecule compounds exhibiting target-mediated drug disposition (TMMD): a minireview. J Clin Pharmacol. doi:10.1002/jcph.804
  6. 6.
    Gibiansky L, Gibiansky E (2010) Target-mediated drug disposition model for drugs that bind to more than one target. J Pharmacokinet Pharmacodyn 37(4):323–346CrossRefPubMedGoogle Scholar
  7. 7.
    Gibiansky L, Gibiansky E (2014) Target-mediated drug disposition model and its approximations for antibody-drug conjugates. J Pharmacokinet Pharmacodyn 41(1):35–47CrossRefPubMedGoogle Scholar
  8. 8.
    Krippendorff BF, Kuester K, Kloft C, Huisinga W (2009) Nonlinear pharmacokinetics of therapeutic proteins resulting from receptor mediated endocytosis. J Pharmacokinet Pharmacodyn 36(3):239–260CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cao Y, Jusko WJ (2014) Incorporating target-mediated drug disposition in a minimal physiologically-based pharmacokinetic model for monoclonal antibodies. J Pharmacokinet Pharmacodyn 41(4):375–387CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chen X, Jiang X, Jusko WJ, Zhou H, Wang W (2016) Minimal physiologically-based pharmacokinetic (mPBPK) model for a monoclonal antibody against interleukin-6 in mice with collagen-induced arthritis. J Pharmacokinet Pharmacodyn 43:291–304CrossRefPubMedGoogle Scholar
  11. 11.
    Gibiansky L, Gibiansky E, Kakkar T, Ma P (2008) Approximations of the target-mediated drug disposition model and identifiability of model parameters. J Pharmacokinet Pharmacodyn 35(5):573–591CrossRefPubMedGoogle Scholar
  12. 12.
    Peletier LA, Gabrielsson J (2012) Dynamics of target-mediated drug disposition: characteristic profiles and parameter identification. J Pharmacokinet Pharmacodyn 39(5):429–451CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Peletier LA, Gabrielsson J (2013) Dynamics of target-mediated drug disposition: how a drug reaches its target. Comput Geosci 17:599–608CrossRefGoogle Scholar
  14. 14.
    Marathe A, Krzyzanski W, Mager DE (2009) Numerical validation and properties of a rapid binding approximation of a target-mediated drug disposition pharmacokinetic model. J Pharmacokinet Pharmacodyn 36(3):199–219CrossRefPubMedGoogle Scholar
  15. 15.
    Ma P (2012) Theoretical considerations of target-mediated drug disposition models: simplifications and approximations. Pharm Res 29(3):866–882CrossRefPubMedGoogle Scholar
  16. 16.
    Patsatzis DG, Maris DT, Goussis DA (2016) Asymptotic analysis of a target-mediated drug disposition model: algorithmic and traditional approaches. Bull Math Biol 78(6):1121–1161CrossRefPubMedGoogle Scholar
  17. 17.
    Yan X, Chen Y, Krzyzanski W (2012) Methods of solving rapid binding target-mediated drug disposition model for two drugs competing for the same receptor. J Pharmacokinet Pharmacodyn 39(5):543–560CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Koch G, Jusko WJ, Schropp J (2017) Target mediated drug disposition with drug-drug interaction, Part II: competitive and uncompetitive cases. J Pharmacokinet Pharmacodyn. doi:10.1007/s10928-016-9502-0
  19. 19.
    Fenichel N (1979) Geometric singular perturbation theory for ordinary differential equations. J Diff Equ 31:54–98CrossRefGoogle Scholar
  20. 20.
    Vasileva AB (1963) Asymptotic behaviour of solutions to certain problems involving nonlinear differential equations containing a small parameter multiplying the highest derivatives. Russ Math Surv 18:13–83CrossRefGoogle Scholar
  21. 21.
    Brenan KE, Campbell SL, Petzold LR (1996) Numerical solution of initial value problems in differential-algebraic equations. Classics in Applied Mathematics 14 SIAMGoogle Scholar
  22. 22.
    D’Argenio DZ, Schumitzky A, Wang X (2009) ADAPT 5 user’s guide: pharmacokinetic/pharmacodynamic systems analysis software. Biomedical Simulations Resource, Los AngelesGoogle Scholar
  23. 23.
    Beal S, Sheiner LB, Boeckmann A, Bauer RJ (2009) NONMEM user’s guides. Icon Development Solutions, Ellicott CityGoogle Scholar
  24. 24.
    R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  25. 25.
    Release MATLAB (2014b) The MathWorks. MathWorks Inc., NatickGoogle Scholar
  26. 26.
    Hairer E, Wanner G (1991) Solving ordinary differential equations II. Stiff and differential-algebraic problems, 2nd edn in 1996., Springer Series in Computational Mathematics 14. Springer, New YorkGoogle Scholar
  27. 27.
    Goussis DA, Valorani M (2006) An efficient iterative algorithm for the approximation of the fast and slow dynamics of stiff systems. J Comput Phys 214(1):316–46CrossRefGoogle Scholar
  28. 28.
    Kourdis PD, Goussis DA (2013) Glycolysis in saccharomyces cerevisiae: algorithmic exploration of robustness and origin of oscillation. Math Biosci 243(2):190–214CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Gilbert Koch
    • 1
  • William J. Jusko
    • 2
  • Johannes Schropp
    • 3
  1. 1.Pediatric Pharmacology and PharmacometricsUniversity of Basel Children’s HospitalBaselSwitzerland
  2. 2.Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical SciencesState University of New York at BuffaloBuffaloUSA
  3. 3.Department of Mathematics and StatisticsUniversity of KonstanzKonstanzGermany

Personalised recommendations