Skip to main content
Log in

Target-mediated drug disposition with drug–drug interaction, Part I: single drug case in alternative formulations

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Target-mediated drug disposition (TMDD) describes drug binding with high affinity to a target such as a receptor. In application TMDD models are often over-parameterized and quasi-equilibrium (QE) or quasi-steady state (QSS) approximations are essential to reduce the number of parameters. However, implementation of such approximations becomes difficult for TMDD models with drug–drug interaction (DDI) mechanisms. Hence, alternative but equivalent formulations are necessary for QE or QSS approximations. To introduce and develop such formulations, the single drug case is reanalyzed. This work opens the route for straightforward implementation of QE or QSS approximations of DDI TMDD models. The manuscript is the first part to introduce DDI TMDD models with QE or QSS approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levy G (1994) Pharmacologic target-mediated drug disposition. Clin Pharmacol Ther 56(3):248–252

    Article  CAS  PubMed  Google Scholar 

  2. Mager DE, Jusko WJ (2001) General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn 28(6):507–532

    Article  CAS  PubMed  Google Scholar 

  3. Mager DE, Krzyzanski W (2005) Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition. Pharm Res 22(10):1589–1596

    Article  CAS  PubMed  Google Scholar 

  4. Dua P, Hawkins E, van der Graaf PH (2015) A tutorial on target-mediated drug disposition (TMDD) models. CPT Pharmacomet Syst Pharmacol 4(6):324–337

    Article  CAS  Google Scholar 

  5. An G (2016) Small-molecule compounds exhibiting target-mediated drug disposition (TMMD): a minireview. J Clin Pharmacol. doi:10.1002/jcph.804

  6. Gibiansky L, Gibiansky E (2010) Target-mediated drug disposition model for drugs that bind to more than one target. J Pharmacokinet Pharmacodyn 37(4):323–346

    Article  CAS  PubMed  Google Scholar 

  7. Gibiansky L, Gibiansky E (2014) Target-mediated drug disposition model and its approximations for antibody-drug conjugates. J Pharmacokinet Pharmacodyn 41(1):35–47

    Article  CAS  PubMed  Google Scholar 

  8. Krippendorff BF, Kuester K, Kloft C, Huisinga W (2009) Nonlinear pharmacokinetics of therapeutic proteins resulting from receptor mediated endocytosis. J Pharmacokinet Pharmacodyn 36(3):239–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cao Y, Jusko WJ (2014) Incorporating target-mediated drug disposition in a minimal physiologically-based pharmacokinetic model for monoclonal antibodies. J Pharmacokinet Pharmacodyn 41(4):375–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen X, Jiang X, Jusko WJ, Zhou H, Wang W (2016) Minimal physiologically-based pharmacokinetic (mPBPK) model for a monoclonal antibody against interleukin-6 in mice with collagen-induced arthritis. J Pharmacokinet Pharmacodyn 43:291–304

    Article  CAS  PubMed  Google Scholar 

  11. Gibiansky L, Gibiansky E, Kakkar T, Ma P (2008) Approximations of the target-mediated drug disposition model and identifiability of model parameters. J Pharmacokinet Pharmacodyn 35(5):573–591

    Article  CAS  PubMed  Google Scholar 

  12. Peletier LA, Gabrielsson J (2012) Dynamics of target-mediated drug disposition: characteristic profiles and parameter identification. J Pharmacokinet Pharmacodyn 39(5):429–451

    Article  PubMed  PubMed Central  Google Scholar 

  13. Peletier LA, Gabrielsson J (2013) Dynamics of target-mediated drug disposition: how a drug reaches its target. Comput Geosci 17:599–608

    Article  Google Scholar 

  14. Marathe A, Krzyzanski W, Mager DE (2009) Numerical validation and properties of a rapid binding approximation of a target-mediated drug disposition pharmacokinetic model. J Pharmacokinet Pharmacodyn 36(3):199–219

    Article  CAS  PubMed  Google Scholar 

  15. Ma P (2012) Theoretical considerations of target-mediated drug disposition models: simplifications and approximations. Pharm Res 29(3):866–882

    Article  CAS  PubMed  Google Scholar 

  16. Patsatzis DG, Maris DT, Goussis DA (2016) Asymptotic analysis of a target-mediated drug disposition model: algorithmic and traditional approaches. Bull Math Biol 78(6):1121–1161

    Article  CAS  PubMed  Google Scholar 

  17. Yan X, Chen Y, Krzyzanski W (2012) Methods of solving rapid binding target-mediated drug disposition model for two drugs competing for the same receptor. J Pharmacokinet Pharmacodyn 39(5):543–560

    Article  PubMed  PubMed Central  Google Scholar 

  18. Koch G, Jusko WJ, Schropp J (2017) Target mediated drug disposition with drug-drug interaction, Part II: competitive and uncompetitive cases. J Pharmacokinet Pharmacodyn. doi:10.1007/s10928-016-9502-0

  19. Fenichel N (1979) Geometric singular perturbation theory for ordinary differential equations. J Diff Equ 31:54–98

    Article  Google Scholar 

  20. Vasileva AB (1963) Asymptotic behaviour of solutions to certain problems involving nonlinear differential equations containing a small parameter multiplying the highest derivatives. Russ Math Surv 18:13–83

    Article  Google Scholar 

  21. Brenan KE, Campbell SL, Petzold LR (1996) Numerical solution of initial value problems in differential-algebraic equations. Classics in Applied Mathematics 14 SIAM

  22. D’Argenio DZ, Schumitzky A, Wang X (2009) ADAPT 5 user’s guide: pharmacokinetic/pharmacodynamic systems analysis software. Biomedical Simulations Resource, Los Angeles

    Google Scholar 

  23. Beal S, Sheiner LB, Boeckmann A, Bauer RJ (2009) NONMEM user’s guides. Icon Development Solutions, Ellicott City

    Google Scholar 

  24. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  25. Release MATLAB (2014b) The MathWorks. MathWorks Inc., Natick

    Google Scholar 

  26. Hairer E, Wanner G (1991) Solving ordinary differential equations II. Stiff and differential-algebraic problems, 2nd edn in 1996., Springer Series in Computational Mathematics 14. Springer, New York

  27. Goussis DA, Valorani M (2006) An efficient iterative algorithm for the approximation of the fast and slow dynamics of stiff systems. J Comput Phys 214(1):316–46

    Article  Google Scholar 

  28. Kourdis PD, Goussis DA (2013) Glycolysis in saccharomyces cerevisiae: algorithmic exploration of robustness and origin of oscillation. Math Biosci 243(2):190–214

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH Grant GM24211.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert Koch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 38 kb)

Appendices

Appendix 1: Short infusion and IV bolus

By construction and the use of Eqs. (12, 4344) the final system (4651) is equivalent to

$$\begin{aligned} \frac{d}{dt} C + \frac{d}{dt} RC &= In(t) -k_{el} C - k_{int}RC \end{aligned}$$
(55)
$$\begin{aligned} \frac{d}{dt} R + \frac{d}{dt} RC &= k_{syn} - k_{deg}R -k_{int}RC \end{aligned}$$
(56)
$$\begin{aligned} 0 &= C \cdot R - K_Y RC . \end{aligned}$$
(57)

We assume that the short infusion with infusion rate \(dose/(\varepsilon V)\) is given for \(t \in [t_a, t_a + \varepsilon ]\). We then obtain by integrating Eqs. (5556) over \([t_a, t_a + \varepsilon ]\)

$$\begin{aligned} \int _{t_a}^{t_a +\varepsilon } \frac{d}{dt} C + \frac{d}{dt} RC \, dt= & {} \int _{t_a}^{t_a +\varepsilon } \frac{dose}{\varepsilon V} \, dt \\&- \int _{t_a}^{t_a +\varepsilon } k_{el}C + k_{int} RC \, dt \\ \int _{t_a}^{t_a +\varepsilon } \frac{d}{dt} R + \frac{d}{dt} RC \, dt= & {} \int _{t_a}^{t_a +\varepsilon } k_{syn} - k_{deg} R \\&\qquad - k_{int} RC \, dt \end{aligned}$$

which leads to

$$\begin{aligned} C(t_a + \varepsilon ) - C(t_a ) + RC(t_a + \varepsilon ) -RC(t_a ) \; = \;& \\ \quad \quad \frac{dose}{V} - \int _{t_a}^{t_a + \varepsilon } k_{el}C + k_{int}RC \, dt&\end{aligned}$$
(58)
$$\begin{aligned} R(t_a + \varepsilon ) - R(t_a ) + RC(t_a + \varepsilon ) -RC(t_a ) \; = \;& \\ \quad \quad \int _{t_a}^{t_a + \varepsilon } k_{syn} -k_{deg}R - k_{int}RC \, dt . \end{aligned}$$
(59)

Now letting \(\varepsilon \rightarrow 0\) in Eqs. (5859) and using Eq. (57) we get

$$\begin{aligned} \lim _{\varepsilon \rightarrow 0} C(t_a + \varepsilon ) + \lim _{\varepsilon \rightarrow 0} \frac{ C(t_a + \varepsilon ) R(t_a +\varepsilon )}{K_Y}=\,\,& {} C_{tot}(t_a ) \\&+ \frac{dose}{V} \, , \\ \lim _{\varepsilon \rightarrow 0} R(t_a + \varepsilon ) + \lim _{\varepsilon \rightarrow 0} \frac{ C(t_a + \varepsilon ) R(t_a +\varepsilon )}{K_Y}=\,\,& {} R_{tot} (t_a ). \end{aligned}$$

This means that \(\lim _{\varepsilon \rightarrow 0} C(t_a + \varepsilon )\), \(\lim _{\varepsilon \rightarrow 0} R(t_a + \varepsilon )\) satisfy Eqs. (5354) and

$$\begin{aligned} \lim _{\varepsilon \rightarrow 0} C(t_a + \varepsilon ) &= C_{new} \\ \lim _{\varepsilon \rightarrow 0} R(t_a + \varepsilon ) &= R_{new} \end{aligned}$$

is shown.

Appendix 2: Source codes

The matrix representation applied in Eqs. (4650) is of the general form

$$\begin{aligned} \begin{pmatrix} H_1 \\ H_2 \\ \end{pmatrix} = \begin{pmatrix} M_{11} &{} M_{12} \\ M_{21} &{} M_{22} \end{pmatrix} \begin{pmatrix} G_1 \\ G_2 \end{pmatrix} \, . \end{aligned}$$

Hence, performing matrix multiplication the right hand side of the differential equation reads

$$\begin{aligned} H_1&= M_{11} G_1 + M_{12} G_2 \end{aligned}$$
(60)
$$\begin{aligned} H_2&= M_{21} G_1 + M_{22} G_2 \end{aligned}$$
(61)

To implement the matrix multiplication in Eq. (46), we apply Eqs. (60)-(61) where \(H_1\),\(H_2\) correspond to DADT(1), DADT(2) in NONMEM (lines 125-126) and XP(1), XP(2) in ADAPT 5 (lines 224–225).

The lines of the code are numbered for referencing but are not part of the code implementation.

NONMEM control stream for single drug TMDD with infusion coded in the control stream

The $PK and $DES blocks of the control stream are presented. Additionally, the first lines of the data file is shown to present the IV infusion mechanism. Full control stream is available in the supplemental material.

100: $PK

101: KEL = THETA(1)*EXP(ETA(1))

102: KD = THETA(2)*EXP(ETA(2))

103: KINT = THETA(3)*EXP(ETA(3))

104: KSYN = THETA(4)*EXP(ETA(4))

105: KDEG = THETA(5)*EXP(ETA(5))

106: V = THETA(6)*EXP(ETA(6))

107: A_0(1) = 0

108: A_0(2) = KSYN/KDEG

109: $DES

110: EPSILON = 1e-4

111: ; Dose at T1 = 0

112: IN = 0

113: IF (T.GE.0.AND.T.LE.0+EPSILON) THEN

114: IN = 100*EPSILON**(-1)

115: ENDIF

116: C = A(1)/V

117: R = A(2)

118: DET = KD+R+C

119: G1 = IN - KEL*C - (KINT*C*R)/KD

120: G2 = KSYN - KDEG*R - (KINT*C*R)/KD

121: M11 = (1/DET)*(KD+C)

122: M12 = (1/DET)*(-C)

123: M21 = (1/DET)*(-R)

124: M22 = (1/DET)*(KD+R)

125: DADT(1) = M11*G1 + M12*G2

126: DADT(2) = M21*G1 + M22*G2

The first lines of the data file are:

#ID,TIME,DV,MDV

127: 1,0,.,1

128: 1,0.0001,.,1

129: 1,1,77.8812,0

ADAPT 5 source code for single drug TMDD

The subroutine DIFFEQ is presented. For full source code see supplemental material.

201: Subroutine DIFFEQ(T,X,XP)

202: Implicit None

203: Include ’globals.inc’

204: Include ’model.inc’

205: Real*8 T,X(MaxNDE),XP(MaxNDE)

206: Real*8 kel,KD,kint,ksyn,kdeg

207: Real*8 C,RR,RR0

208: Real*8 Det,M(2,2),g(2)

209: kel = P(1)

210: KD = P(2)

211: kint = P(3)

212: ksyn = P(4)

213: kdeg = P(5)

214: RR0 = ksyn/kdeg

215: C = X(1)

216: RR = X(2) + RR0

217: Det = RR + C + KD

218: g(1) = R(1) - kel*C - (kint*C*RR)/KD

219: g(2) = ksyn - kdeg*RR - (kint*C*RR)/KD

220: M(1,1) = (1/Det)*(KD+C)

221: M(1,2) = (1/Det)*(-C)

222: M(2,1) = (1/Det)*(-RR)

223: M(2,2) = (1/Det)*(KD+RR)

224: XP(1) = M(1,1)*g(1) + M(1,2)*g(2)

225: XP(2) = M(2,1)*g(1) + M(2,2)*g(2)

226: Return

227: End

Fig. 1
figure 1

Scheme of the necessary steps to construct a QE or QSS approximation of a TMDD system. The three systems in step 4 are equivalent

Fig. 2
figure 2

Schematic of the single TMDD model described by Eqs. (13)

Fig. 3
figure 3

Free concentration C(t) from the original TMDD model Eqs. (17) (dashed line) and the QE or QSS approximation Eqs. (4650) (solid line) is shown. In panel a the QE and in panel b the QSS approximation without baseline for escalating doses (dose = 10, 100 and 1000) are presented. In panel c (QE) and in panel d (QSS) behavior for different baselines (\(C^0\) = 0.01, 0.1, 1 and 10) with a fixed dose (dose = 100) are visualized. In panels e (QE) and f (QSS) the effect for increasing \(k_{on} = 2.5\) and \(k_{off} = 0.1\) (by multiplying the factors 0.1, 1, 10 to both parameters with equal ratio \(K_D\) for QE) for a fixed dose (dose = 100) and baseline (\(C^0\) = 1) are presented. In panel e (QE) the original system converges to the QE approximation and in panel f (QSS) the original systems and its QSS approximations converge for increasing \(k_{on}\) and \(k_{off}\) values

Fig. 4
figure 4

Free concentration versus time data (crosses) produced with the original model Eqs. (17) and fitted with the QE approximation Eqs. (4650) (solid line)

Table 1 The original parameters are defined in the "Methods" section

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koch, G., Jusko, W.J. & Schropp, J. Target-mediated drug disposition with drug–drug interaction, Part I: single drug case in alternative formulations. J Pharmacokinet Pharmacodyn 44, 17–26 (2017). https://doi.org/10.1007/s10928-016-9501-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-016-9501-1

Keywords

Navigation