Skip to main content

Advertisement

Log in

Continuous-time Markov modelling of flexible-dose depression trials

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

The aim of this paper is to provide a systematic methodology for modelling longitudinal data to be used in contexts of limited or even absent knowledge of the physiological mechanism underlying the disease time course. Adopting a system-theoretic paradigm, a population response model is developed where the clinical endpoint is described as a function of the patient’s health state. In particular, a continuous-time stochastic approach is proposed where the clinical score and its time-derivative summarize the patient’s health state affected by a random term accounting for exogenous unpredictable factors. The proposed approach is validated on experimental data from the placebo and drug arms of a Phase II depression trial. Since some subjects in the trial may undergo changes in their treatment dose due to the flexible dosing scheme, dose escalations are modelled as instantaneous perturbations on the state. In its simplest form—an integrated Wiener process—was able to correctly capture the individual responses in both treatment arms. However, a better description of inter-individual variability was obtained by means of a stable Markovian model. Parameter estimation has been carried out according to the empirical Bayes method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mould DR, Denman NG, Duffull S (2007) Using disease progression model as a tool to detect drug effect. Clin Pharmacol Ther 82:81–86. doi:10.1038/sj.clpt.6100228

    Article  CAS  PubMed  Google Scholar 

  2. Shang EY, Gibbs MA, Landen JW, Krams M, Russell T, Denman NG, Mould DR (2009) Evaluation of structural models to describe the effect of placebo upon the time course of major depressive disorder. J Pharmacokinet Pharmacodyn 36:63–80. doi:10.1007/s10928-009-9110-3

    Article  PubMed  Google Scholar 

  3. Gomeni R, Merlo-Pich E (2006) Bayesian modelling and ROC analysis to predict placebo responders using clinical score measured in the initial weeks of treatment in depression trials. Br J Clin Pharmacol 63:595–613. doi:10.1111/j.1365-2125.2006.02815.x

    Article  PubMed Central  Google Scholar 

  4. Nucci G, Gomeni R, Poggesi I (2009) Model-based approaches to increase efficiency of drug development in schizophrenia: a can’t miss opportunity. Expert Opin Drug Discov 4:837–856. doi:10.1517/17460440903036073

    Article  CAS  PubMed  Google Scholar 

  5. Santen G, Danhof M, Della Pasqua O (2008) Evaluation of the treatment response in depression studies using a Bayesian parametric cure rate model. J Psychiatr Res 42:1189–1197. doi:10.1016/j.jpsychires.2007.11.009

    Article  PubMed  Google Scholar 

  6. Holford N, Li J, Benincosa L, Birath M (2002) Population disease progress models for the time course of HAMD score in depressed patients receiving placebo in anti-depressant clinical trials. In: Population Approach Group in Europe (PAGE) 11th Meeting, Abstract 311, http://www.page-meeting.org/?abstract=311

  7. Reddy VP, Kozielska M, Johnson M, Vermeulen A, de Greef R, Liu J, Groothuis GMM, Danhof M, Proost JH (2011) Structural models describing placebo treatment effects in schizophrenia and other neuropsychiatric disorders. Clin Pharmacokinet 50:429–450

    Article  Google Scholar 

  8. Marostica E, Russu A, Gomeni R, Zamuner S, De Nicolao G (2013) A PCA approach to population analysis: with application to a Phase II depression trial. J Pharmacokinet Pharmacodyn 40:213–227. doi:10.1007/s10928-013-9304-6

    Article  PubMed  Google Scholar 

  9. Marostica E, Russu A, Gomeni R, Zamuner S, De Nicolao G (2011). Population modelling of patient responses in antidepressant studies: a stochastic approach

  10. Rowland M, Sheiner LB, Steimer JL (1985) Variability in drug therapy: description, estimation and control. Raven Press, New York

    Google Scholar 

  11. Morters P, Peres Y (2010) Brownian motion. Cambridge University Press, UK

    Book  Google Scholar 

  12. Hamilton M (1960) A rating scale for depression. J Neurol Neurosur Psychiatr 23:56–62. doi:10.1136/jnnp.23.1.56

    Article  CAS  Google Scholar 

  13. Neve M, De Nicolao G, Marchesi L (2007) Nonparametric identification of population models via Gaussian processes. Automatica 43:1134–1144. doi:10.1016/j.automatica.2006.12.024

    Article  Google Scholar 

  14. Russu A, Poggesi I, Gomeni R, De Nicolao G (2011) Bayesian population modeling of Phase I dose escalation studies: gaussian process versus parametric approaches. IEEE Trans Biomed Engineering 58:3156–3164. doi:10.1109/TBME.2011.2164614

    Article  Google Scholar 

  15. Robbins H (1964) The Empirical Bayes Approach to Statistical Decision Problems. Ann Math Stat 35:1–20. doi:10.1214/aoms/1177703729

    Article  Google Scholar 

  16. R Development Core Team (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, http://www.R-project.org

  17. Karlsson M, Holford N (2008) A tutorial on Visual Predictive Checks. In: Population Approach Group in Europe (PAGE) 17th Meeting, Abstract 1434. http://www.page-meeting.org/default.asp?abstract=1434

  18. Russu A, Marostica E, De Nicolao G, Hooker AC, Poggesi I, Gomeni R, Zamuner S (2012) Joint modeling of efficacy, dropout, and tolerability in flexible-dose trials: a case study in depression. Clin Pharmacol Ther 91:863–871. doi:10.1038/clpt.2011.322

    Article  CAS  PubMed  Google Scholar 

  19. Neve M, De Nicolao G, Marchesi L (2008) Nonparametric identification of population models: an MCMC approach. IEEE Trans Biomed Eng 55:41–50. doi:10.1109/TBME.2007.902240

    Article  PubMed  Google Scholar 

  20. Gomeni R, Lavergne A, Merlo-Pich E (2009) Modeling placebo response in depression trials using longitudinal model with informative dropout. Eur J Pharm Sci 36:4–10. doi:10.1016/j.ejps.2008.10.025

    Article  CAS  PubMed  Google Scholar 

  21. Hu C, Sale ME (2003) A joint model for nonlinear longitudinal data with Informative dropout. J Pharmacokinet Pharmacodyn 30:83–103. doi:10.1023/A:1023249510224

    Article  PubMed  Google Scholar 

  22. Hu C, Szapary PO, Yeilding N, Zhou H (2011) Informative dropout modeling of longitudinal ordered categorical data and model validation: application to exposure-response modeling of physician’s global assessment score for ustekinumab in patients with psoriasis. J Pharmacokinet Pharmacodyn 38:237–260. doi:10.1007/s10928-011-9191-7

    Article  PubMed  Google Scholar 

  23. Kitagawa (1977) An algorithm for solving the matrix equation X = FXF’ + S. J Control 25:745–753. doi:10.1080/00207177808922369

    Article  Google Scholar 

  24. Poggio T, Girosi F (1990) Networks for approximation and learning. Proc IEEE 78:1481–1497. doi:10.1109/5.58326

    Article  Google Scholar 

  25. Girosi F, Jones M, Poggio T (1995) Regularization theory and neural networks architectures. Neural Comput 7:219–269. doi:10.1162/neco.1995.7.2.219

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleonora Marostica.

Appendices

Appendix 1: Auto-covariance function of Markov processes

In this appendix, the formulas to derive the auto-covariance functions \(\overline{R}(t, \tau )\) and \(\widetilde{R}(t, \tau )\) for the average curve and individual shift, respectively, are detailed. First, some basic properties of the auto-covariance of Markov processes are recalled. Then, we consider their application to the model used for the typical response and the individual shift. Differently from [13, 14, 19] the present derivation accounts for non-zero initial variance of the individual shift and the possible presence of exogenous factors as dose changes.

Definition of auto-covariance

A random process can be seen as a sequence of random variables over time. For example, one common random process is the white Gaussian noise where each random variable \(w(t)\) is a Gaussian random variable with zero-mean and variance \(\lambda ^2\). Given two distinct time points t and \(\tau \), the associated values of the random process, i.e. the random variables \(w(t)\) and \(w(\tau )\), are characterized by a covariance \(R(t, \tau ) = cov[w(t), w(\tau )]\) for all possible choices of \(t\) and \(\tau \). The function \(R(t, \tau )\) is commonly known as the auto-covariance function of the process \(w(t)\).

Basic properties

Given the following system of equations:

$$\begin{aligned} \left\{ \begin{array}{lll} \dot{x}(t) = A x(t) + B w(t) \\ z(t) = C x(t) \end{array} \right. \end{aligned}$$
(12)

where \(x(t_0) \sim N(0, P_0), w(t) \sim WGN(\lambda ^2)\), and \(E[x(t_0)w(t)] = 0\), its solution \(x(t)\) is given by the Lagrange formula

$$\begin{aligned} x(t) = e^{A(t - t_0)} x(t_0) + \int \limits _{t_0}^{t} e^{A(t - s) B w(s) ds} \end{aligned}$$
(13)

Let \(P(t) = var[x(t)] = E[x(t)x(t)^T]\) be the variance of the state. The auto-covariance function of \(x(t)\) is given by

$$\begin{aligned} cov[x(t), x(\tau )] = E[x(t)x(\tau )^T] = \left\{ \begin{array}{ll} P(t) e^{A^T(\tau - t)} &{} t \le \tau \\ e^{A(t - \tau )} P(t) &{} t > \tau \end{array} \right. \end{aligned}$$
(14)

Accordingly, the auto-covariance function of the output \(z(t)\) is

$$\begin{aligned} cov[z(t), z(\tau )] = cov[Cx(t), Cx(\tau )] = C E[x(t)x(\tau )^T] C^T \end{aligned}$$
(15)

The state variance \(P(t)\) satisfies the following Lyapunov differential equation [23]

$$\begin{aligned} \dot{P}(t) = A P(t) + P(t) A^T + B \lambda ^2 B^T , \qquad P(0) = P_0 \end{aligned}$$
(16)

from which

$$\begin{aligned} P(t) = e^{At} P(0) e^{A^Tt} + \int \limits _{0}^{t} e^{A(t - s)} B \lambda ^2 B^T e^{A^T(t - s)} ds \end{aligned}$$
(17)

and

$$\begin{aligned} R(t, \tau ) = \left\{ \begin{array}{ll} C P(t) e^{A^T(\tau - t)} C^T &{} t \le \tau \\ C e^{A(t - \tau )} P(\tau ) C^T &{} t > \tau \end{array} \right. \end{aligned}$$
(18)

Auto-covariance function of the population curve

Based on the matrices \(A, B\), and \(C\) defined in (4) and recalling that \(P_0 = 0\), it can be found that

$$\begin{aligned} e^{At} = \left[ \begin{array}{cc} 1 &{} t \\ 0 &{} 1 \end{array} \right] \end{aligned}$$
(19)

and, according to (17)

$$\begin{aligned} P(t) = \left[ \begin{array}{cc} p_{11}(t) &{} p_{12}(t) \\ p_{21}(t) &{} p_{22}(t) \end{array} \right] \end{aligned}$$
(20)

where

$$\begin{aligned} p_{11}(t)&= \dfrac{\overline{\lambda }^2 t^3}{3} \nonumber \\ p_{12}(t)&= p_{21}(t) = \dfrac{\overline{\lambda }^2 t^2}{2} \nonumber \\ p_{22}(t)&= \overline{\lambda }^2 t \end{aligned}$$
(21)

Moreover, based on (18), the auto-covariance function \(\overline{R}(t, \tau )\) of the population curve is

$$\begin{aligned} \overline{R}(t, \tau ) = \overline{\lambda }^2 \left\{ \begin{array}{ll} \dfrac{t^2}{2} \left( \tau - \dfrac{t}{3}\right) &{} t \le \tau \\ \dfrac{\tau ^2}{2} \left( t - \dfrac{\tau }{3}\right) &{} t > \tau \end{array} \right. \end{aligned}$$
(22)

Auto-covariance function of the individual shifts: non-escalating subjects

In this case

$$\begin{aligned} A&= \widetilde{A} = \left[ \begin{array}{cc} a &{} 1 \\ 0 &{} a \end{array} \right] \end{aligned}$$
(23)
$$\begin{aligned} e^{\widetilde{A}t}&= \left[ \begin{array}{cc} e^{at} &{} t e^{at} \\ 0 &{} e^{at} \end{array} \right] \end{aligned}$$
(24)

and, based on (20),

$$\begin{aligned} P(t) = e^{\widetilde{A}t} \left[ \begin{array}{cc} \sigma ^2_0 &{} 0 \\ 0 &{} \sigma ^2_1 \end{array}\right] e^{\widetilde{A}^Tt} + \int \limits _{0}^{t} e^{\widetilde{A}(t - s)} B \widetilde{\lambda }^2 B^T e^{\widetilde{A}^T(t - s)} ds \end{aligned}$$
(25)

Then, the auto-covariance function \(\widetilde{R}(t, \tau )\) is

$$\begin{aligned} \widetilde{R}(t, \tau ) = \left\{ \begin{array}{ll} e^{a(\tau - t)} p_{11}(t) + (\tau - t) e^{a(\tau - t)} p_{12}(t) &{} t \le \tau \\ e^{a(t - \tau )} p_{11}(\tau ) + (t - \tau ) e^{a(t - \tau )} p_{12}(\tau ) &{} t > \tau \end{array} \right. \end{aligned}$$
(26)

where

$$\begin{aligned} p_{11}(t)&= \widetilde{\lambda }^2 \left( \dfrac{t^2 e^{2at}}{2a} - \dfrac{t e^{2at}}{2a^2} + \dfrac{e^{2at} - 1}{4a^3} \right) + f^2_{11} \sigma ^2_0 + f^2_{12} \sigma ^2_1 \nonumber \\ p_{12}(t)&= p_{21}(t) = \dfrac{\widetilde{\lambda }^2}{4a^2} \left( 2ate^{2at} - e^{2at} + 1 \right) + f_{12} \sigma ^2_1 f_{22} \nonumber \\ p_{22}(t)&= \dfrac{\widetilde{\lambda }^2}{2a} \left( e^{2at} - 1 \right) + f^2_{22} \sigma ^2_1 \end{aligned}$$
(27)

where \(f_{11}(t) = f_{22}(t) = e^{at}\) and \(f_{12}(t) = te^{at}\).

Auto-covariance function of the individual shifts: escalating subjects

In order to define the auto-covariance function \(\widetilde{R}(t, \tau )\) for the escalating subjects, three scenarios must be taken into account with respect to the occurrence of the time of dose change \(t_{esc}\):

  1. 1.

    \(t < \tau < t_{esc}\)

  2. 2.

    \(t < t_{esc} < \tau \)

  3. 3.

    \(t_{esc} < t < \tau \)

The auto-covariance function relative to the first two scenarios coincides with the one defined in (26) for the non-escalating subjects. For the third scenario, Eq. (25) has to be extended to account for the exogenous event:

$$\begin{aligned} P(t) = e^{\widetilde{A}t} \left[ \begin{array}{cc} \sigma ^2_0 &{} 0 \\ 0 &{} \sigma ^2_1 \end{array}\right] e^{\widetilde{A}^Tt} + \int \limits _{0}^{t} e^{\widetilde{A}(t - s)} B \widetilde{\lambda }^2 B^T e^{\widetilde{A}^T(t - s)} ds + e^{\widetilde{A}(t - t_{esc})} \left[ \begin{array}{cc} 0 &{} 0 \\ 0 &{} \sigma ^2_{\varDelta } \end{array}\right] e^{\widetilde{A}^T (t - t_{esc})} \end{aligned}$$
(28)

More specifically, the elements of the matrix (20) are defined as:

$$\begin{aligned} p_{11}(t)&= \widetilde{\lambda }^2 \left( \dfrac{t^2 e^{2at}}{2a} - \dfrac{t e^{2at}}{2a^2} + \dfrac{e^{2at} - 1}{4a^3} \right) + f^2_{11} \sigma ^2_0 + f^2_{12} \sigma ^2_1 + \left( (t - t_{esc}) e^{a(t - t_{esc})}\right) ^2 \sigma ^2_{\varDelta } \nonumber \\ p_{12}(t)&= p_{21}(t) = \dfrac{\widetilde{\lambda }^2}{4a^2} \left( 2ate^{2at} - e^{2at} + 1 \right) + f_{12} \sigma ^2_1 f_{22} + (t - t_{esc}) e^{a(t - t_{esc})} \sigma ^2_{\varDelta } e^{a(t - t_{esc})}\nonumber \\ p_{22}(t)&= \dfrac{\widetilde{\lambda }^2}{2a} \left( e^{2at} - 1 \right) + f^2_{22} \sigma ^2_1 + e^{2a(t - t_{esc})} \sigma ^2{\varDelta } \end{aligned}$$
(29)

with \(f_{11}(t) = f_{22}(t) = e^{at}\) and \(f_{12}(t) = te^{at}\). Therefore, the auto-covariance function \(\widetilde{R}(t, \tau )\) becomes

$$\begin{aligned} \widetilde{R}(t, \tau ) = \left\{ \begin{array}{ll} C \left( P(t) e^{\widetilde{A}^T(\tau - t)} + e^{\widetilde{A}(t - t_{esc})} \left[ \begin{array}{cc} 0 &{} 0 \\ 0 &{} \sigma ^2_{\varDelta } \end{array}\right] e^{\widetilde{A}^T (t - t_{esc})}\right) C^T &{} t \le \tau \\ C \left( e^{\widetilde{A}^T(t - \tau )} P(\tau ) + e^{\widetilde{A}(t - t_{esc})} \left[ \begin{array}{cc} 0 &{} 0 \\ 0 &{} \sigma ^2_{\varDelta } \end{array}\right] e^{\widetilde{A}^T (t - t_{esc})}\right) C^T&t > \tau \end{array} \right. \end{aligned}$$
(30)

Appendix 2: Parameter estimation

The algorithms reported in this section are essentially the same as in [13, 14]. They are repeated here for the sake of self-consistency.

As explained in Section Methods, the initial conditions \(\overline{x}(0)\) for the average curve are characterized by infinite variance. Therefore, Eq. (2) can be reformulated as

$$\begin{aligned} z_i(t)&= \overline{z}^*(t) + \widetilde{z}_i(t) \nonumber \\ \overline{z}^*(t)&= \varPhi ^T(t) \varPsi + \overline{z}(t) \end{aligned}$$
(31)

where \(\varPhi ^T(t) = [1 \quad t]\) and \(\varPsi \sim N(0, \infty I)\).

Moreover, let \(M\) be the total number of subjects and \(n = \sum \nolimits _{i = 1}^{M} n_i\) the total number of data, Eq. (31) can be defined in vector notation:

$$\begin{aligned} \begin{array}{c} \mathbf {\overline{z}} = [\overline{z}(t^1_1) \quad \ldots \quad \overline{z}^{n_1}_1 \quad \ldots \quad \overline{z}(t^1_M) \quad \ldots \quad \overline{z}(t^{n_M}_M)]^T \\ \mathbf {\widetilde{z}} = [\widetilde{z}(t^1_1) \quad \ldots \quad \widetilde{z}^{n_1}_1 \quad \ldots \quad \widetilde{z}(t^1_M) \quad \ldots \quad \widetilde{z}(t^{n_M}_M)]^T \\ \mathbf {v} = [v^1_1 \quad \ldots \quad v^{n_1}_1 \quad \ldots \quad v^1_M \quad \ldots \quad v^{n_M}_M]^T \\ \varvec{\varPhi } = [\varPhi (t^1_1) \quad \ldots \quad \varPhi ^{n_1}_1 \quad \ldots \quad \varPhi (t^1_M) \quad \ldots \quad \varPhi (t^{n_M}_M)]^T \\ \\ \mathbf {Y} = \varvec{\varPhi } \varPsi + \mathbf {\overline{z}} + \mathbf {\widetilde{z}} + \mathbf {v} \end{array} \end{aligned}$$
(32)

The variance of the vectors \(\mathbf {\overline{z}}\) and \(\mathbf {\widetilde{z}}\), which are \({\mathbf {\overline{R}}}(t, \tau )\) and \({\mathbf {\widetilde{R}}}(t, \tau )\), respectively, can be defined as

$$\begin{aligned} {\mathbf {\overline{R}}}&= var [{\mathbf {\overline{z}}}] = \left[ \begin{array}{ccc} \overline{R}(t^1_1, \tau ^1_1) &{} \ldots &{} \overline{R}(t^1_1, \tau ^{n_M}_M) \\ \vdots &{} \vdots &{} \vdots \\ \overline{R}(t^{n_M}_M, \tau ^1_1) &{} \ldots &{} \overline{R}(t^{n_M}_M, \tau ^{n_M}_M) \end{array} \right] \end{aligned}$$
(33)
$$\begin{aligned} {\mathbf {\widetilde{R}}}&= var [{\mathbf {\widetilde{z}}}] = blockdiag \left\{ {\mathbf {\widetilde{R}}}_1, \ldots , {\mathbf {\widetilde{R}}}_M \right\} \end{aligned}$$
(34)

where \({\mathbf {\widetilde{R}}}_i\) for the \(i\)-th subject is

$$\begin{aligned} {\mathbf {\widetilde{R}}}_i = \left[ \begin{array}{ccc} \widetilde{R}(t^1_i, \tau ^1_j) &{} \ldots &{} \widetilde{R}(t^1_i, \tau ^{n_i}_i) \\ \vdots &{} \vdots &{} \vdots \\ \widetilde{R}(t^{n_i}_i, \tau ^1_i) &{} \ldots &{} \widetilde{R}(t^{n_i}_i, \tau ^{n_i}_i) \end{array} \right] \end{aligned}$$
(35)

Based on the definition of the auto-covariances \(\overline{R}\) and \(\widetilde{R}_i\), model (31) can be formulated as

$$\begin{aligned} \hat{\overline{z}}^*(t)&= E[\overline{z}^*(t)|{\mathbf {Y}}] = \sum \limits _{i = 1}^{M} \sum \limits _{k = 1}^{n_i} c^k_i \overline{R}(t, \tau ^k_i) + \varPhi ^T(t) {\mathbf {b}} \nonumber \\ \hat{z}_i(t)&= E[z_i(t)|{\mathbf {Y}}] = \hat{\overline{z}}^* + \sum \limits _{k = 1}^{n_i} c^k_i \widetilde{R}(t, \tau ^k_i) \end{aligned}$$
(36)

where \(c^k_i\) represent the weights of the regularization network [24, 25] and

$$\begin{aligned} \mathbf {b}&= \left( \varvec{\varPhi }^T \mathbf {M}^{-1} \varvec{\varPhi } \right) ^{-1} \varvec{\varPhi }^T \mathbf {M}^{-1} \mathbf {Y} \\ \mathbf {c}&= \mathbf {M}^{-1} \left( \mathbf {Y} - \varvec{\varPhi } \mathbf {b} \right) \\ \mathbf {M}&= \mathbf {\overline{R}} + \mathbf {\widetilde{R}} + \varvec{\varSigma }_v \\ \varvec{\varSigma }_v&= \sigma ^2 \mathbf {I}_{Mn} \end{aligned}$$

Let \(\alpha = [\overline{\lambda }^2 \quad \widetilde{\lambda }^2 \quad \sigma ^2_0 \quad \sigma ^2_1 \quad \sigma ^2_{\varDelta } \quad \sigma ^2]\) be the vector of the unknown hyperparameters. According to the Empirical Bayes paradigm [14, 15], two steps are performed: initially \(\alpha \) is estimated through the Maximum Likelihood (ML) approach, by maximizing the marginal likelihood \(p(Y|\alpha )\); once the ML estimates of the hyperparameters \(\alpha ^{ML}\) are available, they are plugged into the model and the Bayesian estimate is calculated through the standard conditional posterior formula for linear Gaussian models. Uninformative priors were assumed in this analysis.

In particular,

$$\begin{aligned} \alpha ^{ML}&= \arg \min \nolimits _{\varvec{\alpha }} \left\{ log(det(\mathbf {M})) + \mathbf {Y}^T \mathbf {M}^{-1} \mathbf {Y} \right\} \nonumber \\ \alpha ^{ML}&= [\overline{\lambda }^2 \quad \widetilde{\lambda }^2 \quad \sigma ^2_0 \quad \sigma ^2_1 \quad \sigma ^2_{\varDelta } \quad \sigma ^2] \end{aligned}$$
(37)

More technical details can be found in [13].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marostica, E., Russu, A., Gomeni, R. et al. Continuous-time Markov modelling of flexible-dose depression trials. J Pharmacokinet Pharmacodyn 41, 625–638 (2014). https://doi.org/10.1007/s10928-014-9389-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-014-9389-6

Keywords

Navigation