Journal of Pharmacokinetics and Pharmacodynamics

, Volume 41, Issue 5, pp 415–429 | Cite as

Modeling T cell responses to antigenic challenge

  • Dominik WodarzEmail author
Original Paper


T cell responses are a crucial part of the adaptive immune system in the fight against infections. This article discusses the use of mathematical models for understanding the dynamics of cytotoxic T lymphocyte (CTL) responses against viral infections. Complementing experimental research, mathematical models have been very useful for exploring new hypotheses, interpreting experimental data, and for defining what needs to be measured to improve understanding. This review will start with minimally parameterized models of CTL responses, which have generated some valuable insights into basic dynamics and correlates of control. Subsequently, more biological complexity is incorporated into this modeling framework, examining different mechanisms of CTL expansion, different effector activities, and the influence of T cell help. Models and results are discussed in the context of data from specific infections.


Virus dynamics CTL Mathematical models Computer simulations Memory Correlates of control 


  1. 1.
    Knipe DM, Howley P (2013) Fields virology, 6th edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  2. 2.
    Owen J, Punt J, Stranford S (2013) Kuby immunology, 7th edn. W.H. Freeman, New YorkGoogle Scholar
  3. 3.
    Wodarz D (2006) Killer cell dynamics: mathematical and computational approaches to immunology. Springer, New YorkGoogle Scholar
  4. 4.
    Nowak MA, May RM (2000) Virus dynamics mathematical principles of immunology and virology. Oxford University Press, OxfordGoogle Scholar
  5. 5.
    Perelson AS (2002) Modelling viral and immune system dynamics. Nature Rev Immunol 2(1):28–36CrossRefGoogle Scholar
  6. 6.
    De Boer RJ, Homann D, Perelson AS (2003) Different dynamics of CD4+ and CD8+ T cell responses during and after acute lymphocytic choriomeningitis virus infection. J Immunol 171(8):3928–3935PubMedCrossRefGoogle Scholar
  7. 7.
    De Boer RJ, Perelson AS (1995) Towards a general function describing T cell proliferation. J Theor Biol 175(4):567–576PubMedCrossRefGoogle Scholar
  8. 8.
    Perelson AS, Ribeiro RM (2013) Modeling the within-host dynamics of HIV infection (Translated from Eng). BMC Biol 11(1):96 (in Eng)PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Anderson RM, May RM (1979) Population biology of infectious diseases: part I. Nature 280(5721):361–367PubMedCrossRefGoogle Scholar
  10. 10.
    Komarova NL, Wodarz D (2010) ODE models for oncolytic virus dynamics (Translated from eng). J Theor Biol 263(4):530–543 (in eng)PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Wodarz D, Komarova N (2009) Towards predictive computational models of oncolytic virus therapy: basis for experimental validation and model selection (Translated from eng). PLoS One 4(1):e4271 (in eng)PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Nowak MA, Bangham CR (1996) Population dynamics of immune responses to persistent viruses. Science 272(5258):74–79PubMedCrossRefGoogle Scholar
  13. 13.
    Wodarz D, May RM, Nowak MA (2000) The role of antigen-independent persistence of memory CTL. Int Immunol 12:467–477PubMedCrossRefGoogle Scholar
  14. 14.
    Wodarz D, Nowak MA (2000) Immune responses and viral phenotype: do replication rate and cytopathogenicity influence virus load? J Theor Med 2:113–127CrossRefGoogle Scholar
  15. 15.
    Wodarz D, Christensen JP, Thomsen AR (2002) The importance of lytic and nonlytic immune responses in viral infections. Trends Immunol 23(4):194–200PubMedCrossRefGoogle Scholar
  16. 16.
    De Boer RJ, Perelson AS (1998) Target cell limited and immune control models of HIV infection: a comparison. J Theor Biol 190(3):201–214PubMedCrossRefGoogle Scholar
  17. 17.
    Williams MA, Bevan MJ (2007) Effector and memory CTL differentiation. Annu Rev Immunol 25:171–192PubMedCrossRefGoogle Scholar
  18. 18.
    Wodarz D, Arnaout RA, Nowak MA, Lifson JD (2000) Transient antiretroviral treatment during acute simian immunodeficiency virus infection facilitates long-term control of the virus (Translated from eng). Philos Trans R Soc Lond B 355(1400):1021–1029 (in eng)CrossRefGoogle Scholar
  19. 19.
    Wodarz D, Klenerman P, Nowak MA (1998) Dynamics of cytotoxic T-lymphocyte exhaustion. Proc R Soc Lond B 265(1392):191–203CrossRefGoogle Scholar
  20. 20.
    Wodarz D, Nowak MA (1999) Specific therapy regimes could lead to long-term control of HIV. Proc Natl Acad Sci USA 96:14464–14469PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Wodarz D et al (2000) A new theory of cytotoxic T-lymphocyte memory: implications for HIV treatment [In Process Citation]. Philos Trans R Soc Lond B 355(1395):329–343CrossRefGoogle Scholar
  22. 22.
    Antia R, Ganusov VV, Ahmed R (2005) The role of models in understanding CD8+ T-cell memory. Nat Rev Immunol 5(2):101–111PubMedCrossRefGoogle Scholar
  23. 23.
    Wherry EJ, Ahmed R (2004) Memory CD8 T-cell differentiation during viral infection. J Virol 78(11):5535–5545PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Wherry EJ et al (2003) Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol 4(3):225–234PubMedCrossRefGoogle Scholar
  25. 25.
    Buchholz VR et al (2013) Disparate individual fates compose robust CD8+ T cell immunity. Science 340(6132):630–635PubMedCrossRefGoogle Scholar
  26. 26.
    Zinkernagel RM (2000) On immunological memory. Philos Trans R Soc Lond B 355(1395):369–371CrossRefGoogle Scholar
  27. 27.
    Lau LL, Jamieson BD, Somasundaram T, Ahmed R (1994) Cytotoxic T-cell memory without antigen [see comments]. Nature 369(6482):648–652PubMedCrossRefGoogle Scholar
  28. 28.
    Wherry EJ, Barber DL, Kaech SM, Blattman JN, Ahmed R (2004) Antigen-independent memory CD8 T cells do not develop during chronic viral infection. Proc Natl Acad Sci USA 101(45):16004–16009PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Schiffner T, Sattentau QJ, Dorrell L (2013) Development of prophylactic vaccines against HIV-1. Retrovirology 10:72PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Mercado R et al (2000) Early programming of T cell populations responding to bacterial infection. J Immunol 165(12):6833–6839PubMedCrossRefGoogle Scholar
  31. 31.
    Kaech SM, Ahmed R (2001) Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat Immunol 2(5):415–422PubMedPubMedCentralGoogle Scholar
  32. 32.
    van Stipdonk MJ, Lemmens EE, Schoenberger SP (2001) Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat Immunol 2(5):423–429PubMedGoogle Scholar
  33. 33.
    van Stipdonk MJ et al (2003) Dynamic programming of CD8+ T lymphocyte responses. Nat Immunol 4(4):361–365PubMedCrossRefGoogle Scholar
  34. 34.
    Wodarz D, Thomsen AR (2005) Does programmed CTL proliferation optimize virus control? Trends Immunol 26(6):305–310PubMedCrossRefGoogle Scholar
  35. 35.
    Wodarz D, Thomsen AR (2005) Effect of the CTL proliferation program on virus dynamics. Int Immunol 17(9):1269–1276PubMedCrossRefGoogle Scholar
  36. 36.
    Guidotti LG et al (1999) Noncytopathic clearance of lymphocytic choriomeningitis virus from the hepatocyte. J Exp Med 189(10):1555–1564PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Guidotti LG et al (1996) Viral cross-talk: intracellular inactivation of the hepatitis-B virus during an unrelated viral-infection of the liver. Proc Natl Acad Sci USA 93(10):4589–4594PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Guidotti LG et al (1996) Intracellular inactivation of the hepatitis-B virus by cytotoxic T-lymphocytes. Immunity 4(1):25–36PubMedCrossRefGoogle Scholar
  39. 39.
    Guidotti LG et al (1999) Viral clearance without destruction of infected cells during acute HBV infection. Science 284(5415):825–829PubMedCrossRefGoogle Scholar
  40. 40.
    Elemans M et al (2011) Why don’t CD8+ T cells reduce the lifespan of SIV-infected cells in vivo? (Translated from English). Plos Comput Biol 7(9):e1002200 (in English)PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Levy JA (2003) The search for the CD8+ cell anti-HIV factor (CAF). Trends Immunol 24(12):628–632PubMedCrossRefGoogle Scholar
  42. 42.
    Levy JA, Mackewicz CE, Barker E (1996) Controlling HIV pathogenesis: the role of the noncytotoxic anti-HIV response of CD8+ T cells. Immunol Today 17(5):217–224PubMedCrossRefGoogle Scholar
  43. 43.
    Chang KM, Rehermann B, Chisari FV (1997) Immunopathology of hepatitis C. Springer Semin Immunopathol 19(1):57–68PubMedCrossRefGoogle Scholar
  44. 44.
    Chisari FV, Ferrari C (1995) Hepatitis B virus immunopathology. Springer Semin Immunopathol 17(2–3):261–281PubMedGoogle Scholar
  45. 45.
    Zinkernagel RM, Hengartner H (1994) T-cell-mediated immunopathology versus direct cytolysis by virus: implications for HIV and AIDS. Immunol Today 15(6):262–268PubMedCrossRefGoogle Scholar
  46. 46.
    Zinkernagel RM (1993) Immune protection vs. immunopathology vs. autoimmunity: a question of balance and of knowledge. Brain Pathol 3(2):115–121PubMedCrossRefGoogle Scholar
  47. 47.
    Klenerman P, Zinkernagel RM (1997) What can we learn about human immunodeficiency virus infection from a study of lymphocytic choriomeningitis virus? Immunol Rev 159:5–16PubMedCrossRefGoogle Scholar
  48. 48.
    Lehmann-Grube F (1971) Lymphocytic choriomeningitis virus. Virol Monogr 10:1–173Google Scholar
  49. 49.
    Zinkernagel RM, Althage A, Jensen FC (1977) Cell-mediated immune response to lymphocytic choriomeningitis and vaccinia virus in rats. J Immunol 119(4):1242–1247PubMedGoogle Scholar
  50. 50.
    Buchmeier MJ, Welsh RM, Dutko FJ, Oldstone MB (1980) The virology and immunobiology of lymphocytic choriomeningitis virus infection. Adv Immunol 30:275–331PubMedCrossRefGoogle Scholar
  51. 51.
    Bartholdy C, Christensen JP, Wodarz D, Thomsen AR (2000) Persistent virus infection despite chronic cytotoxic T-lymphocyte activation in gamma interferon-deficient mice infected with lymphocytic choriomeningitis virus. (Translated from eng). J Virol 74(22):10304–10311 (in eng)PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Thomsen AR, Nansen A, Andreasen SO, Wodarz D, Christensen JP (2000) Host factors influencing viral persistence. Philos Trans R Soc Lond B 355:1031–1041CrossRefGoogle Scholar
  53. 53.
    Nansen A et al (1999) Compromised virus control and augmented perforin-mediated immunopathology in IFN-gamma-deficient mice infected with lymphocytic choriomeningitis virus. J Immunol 163(11):6114–6122PubMedGoogle Scholar
  54. 54.
    Wodarz D, Krakauer DC (2000) Defining CTL-induced pathology: implications for HIV. Virology 274(1):94–104PubMedCrossRefGoogle Scholar
  55. 55.
    Doherty PC (1997) Cell mediated immunity in virus infections. Biosci Rep 17(4):367–387PubMedCrossRefGoogle Scholar
  56. 56.
    Gerhard W, Mozdzanowska K, Furchner M, Washko G, Maiese K (1997) Role of the B-cell response in recovery of mice from primary influenza virus infection. Immunol Rev 159:95–103PubMedCrossRefGoogle Scholar
  57. 57.
    Moskophidis D, Kioussis D (1998) Contribution of virus-specific CD8+ cytotoxic T cells to virus clearance or pathologic manifestations of influenza virus infection in a T cell receptor transgenic mouse model. J Exp Med 188(2):223–232PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Eichelberger M, Allan W, Zijlstra M, Jaenisch R, Doherty PC (1991) Clearance of influenza virus respiratory infection in mice lacking class I major histocompatibility complex-restricted CD8+ T cells. J Exp Med 174(4):875–880PubMedCrossRefGoogle Scholar
  59. 59.
    Topham DJ, Tripp RA, Hamilton-Easton AM, Sarawar SR, Doherty PC (1996) Quantitative analysis of the influenza virus-specific CD4+ T cell memory in the absence of B cells and Ig. J Immunol 157(7):2947–2952PubMedGoogle Scholar
  60. 60.
    Tripp RA, Sarawar SR, Doherty PC (1995) Characteristics of the influenza virus-specific CD8+ T cell response in mice homozygous for disruption of the H-2lAb gene. J Immunol 155(6):2955–2959PubMedGoogle Scholar
  61. 61.
    Topham DJ, Tripp RA, Doherty PC (1997) CD8+ T cells clear influenza virus by perforin or Fas-dependent processes. J Immunol 159(11):5197–5200PubMedGoogle Scholar
  62. 62.
    Aubert RD et al (2011) Antigen-specific CD4 T-cell help rescues exhausted CD8 T cells during chronic viral infection. Proc Natl Acad Sci USA 108(52):21182–21187PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Kumamoto Y, Mattei LM, Sellers S, Payne GW, Iwasaki A (2011) CD4+ T cells support cytotoxic T lymphocyte priming by controlling lymph node input. Proc Natl Acad Sci USA 108(21):8749–8754PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Kurts C, Robinson BW, Knolle PA (2010) Cross-priming in health and disease. Nat Rev Immunol 10(6):403–414PubMedCrossRefGoogle Scholar
  65. 65.
    Swain SL, McKinstry KK, Strutt TM (2012) Expanding roles for CD4(+) T cells in immunity to viruses. Nat Rev Immunol 12(2):136–148PubMedPubMedCentralGoogle Scholar
  66. 66.
    Wodarz D, Jansen VAA (2001) The role of T cell help for anti-viral CTL responses. J Theor Biol 211:419–432Google Scholar
  67. 67.
    Korthals Altes H, Ribeiro RM, de Boer RJ (2003) The race between initial T-helper expansion and virus growth upon HIV infection influences polyclonality of the response and viral set-point. Proc Biol Sci 270(1522):1349–1358PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Roy SM, Wodarz D (2012) Infection of HIV-specific CD4 T helper cells and the clonal composition of the response. J Theor Biol 304:143–151PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Nowak MA (1996) Immune-responses against multiple epitopes: a theory for immunodominance and antigenic variation. SeminVirol 7(1):83–92Google Scholar
  70. 70.
    Nowak MA et al (1995) Antigenic oscillations and shifting immunodominance in HIV-1 infections. Nature 375(6532):606–611PubMedCrossRefGoogle Scholar
  71. 71.
    Nowak MA et al (1991) Antigenic diversity thresholds and the development of aids. Science 254(5034):963–969PubMedCrossRefGoogle Scholar
  72. 72.
    Ganusov VV et al (2011) Fitness costs and diversity of the cytotoxic T lymphocyte (CTL) response determine the rate of CTL escape during acute and chronic phases of HIV infection. (Translated from eng). J Virol 85(20):10518–10528 (in eng)PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Ganusov VV, Neher RA, Perelson AS (2013) Mathematical modeling of escape of HIV from cytotoxic T lymphocyte responses. J Stat Mech 01:P01010Google Scholar
  74. 74.
    Seich Al Basatena NK et al (2013) Can non-lytic CD8+ T cells drive HIV-1 escape? PLoS Pathog 9(11):e1003656PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Wodarz D, Arnaout RA, Nowak MA, Lifson JD (2000) Transient antiretroviral treatment during acute SIV infection facilitates long-term control of the virus. Philos Trans R Soc Lond B 355:1021–1029CrossRefGoogle Scholar
  76. 76.
    Ribeiro RM, Mohri H, Ho DD, Perelson AS (2002) In vivo dynamics of T cell activation, proliferation, and death in HIV-1 infection: why are CD4+ but not CD8+ T cells depleted? Proc Natl Acad Sci USA 99(24):15572–15577PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Asquith B et al (2006) Quantifying lymphocyte kinetics in vivo using carboxyfluorescein diacetate succinimidyl ester (CFSE). Proc Biol Sci 273(1590):1165–1171PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Asquith B, Debacq C, Macallan DC, Willems L, Bangham CR (2002) Lymphocyte kinetics: the interpretation of labelling data. Trends Immunol 23(12):596–601PubMedCrossRefGoogle Scholar
  79. 79.
    Asquith B, Edwards CT, Lipsitch M, McLean AR (2006) Inefficient cytotoxic T lymphocyte-mediated killing of HIV-1-infected cells in vivo. PLoS Biol 4(4):e90PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    De Boer RJ, Mohri H, Ho DD, Perelson AS (2003) Estimating average cellular turnover from 5-bromo-2′-deoxyuridine (BrdU) measurements. Proc Biol Sci 270(1517):849–858PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    De Boer RJ, Mohri H, Ho DD, Perelson AS (2003) Turnover rates of B cells, T cells, and NK cells in simian immunodeficiency virus-infected and uninfected rhesus macaques. J Immunol 170(5):2479–2487PubMedCrossRefGoogle Scholar
  82. 82.
    Ganusov VV et al (2005) Quantifying cell turnover using CFSE data. J Immunol Methods 298(1–2):183–200PubMedCrossRefGoogle Scholar
  83. 83.
    Mandl JN, Regoes RR, Garber DA, Feinberg MB (2007) Estimating the effectiveness of simian immunodeficiency virus-specific CD8+ T cells from the dynamics of viral immune escape. J Virol 81(21):11982–11991PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Regoes RR, Barber DL, Ahmed R, Antia R (2007) Estimation of the rate of killing by cytotoxic T lymphocytes in vivo. Proc Natl Acad Sci USA 104(5):1599–1603PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Wick WD, Yang OO, Corey L, Self SG (2005) How many human immunodeficiency virus type 1-infected target cells can a cytotoxic T-lymphocyte kill? (Translated from eng). J Virol 79(21):13579–13586 (in eng)PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Beltman JB, Maree AF, de Boer RJ (2007) Spatial modelling of brief and long interactions between T cells and dendritic cells. Immunol Cell Biol 85(4):306–314PubMedCrossRefGoogle Scholar
  87. 87.
    Beltman JB, Maree AF, de Boer RJ (2009) Analysing immune cell migration. (Translated from eng). Nat Rev Immunol 9(11):789–798 (in eng)PubMedCrossRefGoogle Scholar
  88. 88.
    Beltman JB, Maree AF, Lynch JN, Miller MJ, de Boer RJ (2007) Lymph node topology dictates T cell migration behavior. J Exp Med 204(4):771–780PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Ecology and Evolutionary Biology and Department of MathematicsUniversity of CaliforniaIrvineUSA

Personalised recommendations