Advertisement

Journal of Pharmacokinetics and Pharmacodynamics

, Volume 41, Issue 5, pp 389–399 | Cite as

An immunology primer for computational modelers

  • William F. HawseEmail author
  • Penelope A. Morel
Original Paper

Abstract

The immune system is designed to protect an organism from infection and damage caused by a pathogen. A successful immune response requires the coordinated function of multiple cell types and molecules in the innate and adaptive immune systems. Given the complexity of the immune system, it would be advantageous to build computational models to better understand immune responses and develop models to better guide the design of immunotherapies. Often, researchers with strong quantitative backgrounds do not have formal training in immunology. Therefore, the goal of this review article is to provide a brief primer on cellular immunology that is geared for computational modelers.

Keywords

Computational modeling T cell B cell Antibody Signaling 

Notes

Acknowledgments

We greatly acknowledge grant support from the US National Institutes of Health (5T32AI089443-04).

References

  1. 1.
    Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623PubMedCrossRefGoogle Scholar
  2. 2.
    Gough PJ, Gordon S (2000) The role of scavenger receptors in the innate immune system. Microbes Infect 2(3):305–311PubMedCrossRefGoogle Scholar
  3. 3.
    Apostolopoulos V, McKenzie IF (2001) Role of the mannose receptor in the immune response. Curr Mol Med 1(4):469–474PubMedCrossRefGoogle Scholar
  4. 4.
    Barton GM, Medzhitov R (2002) Toll-like receptors and their ligands. Curr Top Microbiol Immunol 270:81–92PubMedGoogle Scholar
  5. 5.
    Lund J et al (2003) Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med 198(3):513–520PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Lund JM et al (2004) Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci USA 101(15):5598–5603PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Larsson BM et al (1999) Gram positive bacteria induce IL-6 and IL-8 production in human alveolar macrophages and epithelial cells. Inflammation 23(3):217–230PubMedGoogle Scholar
  8. 8.
    Svanborg C, Godaly G, Hedlund M (1999) Cytokine responses during mucosal infections: role in disease pathogenesis and host defence. Curr Opin Microbiol 2(1):99–105PubMedCrossRefGoogle Scholar
  9. 9.
    Ono SJ et al (2003) Chemokines: roles in leukocyte development, trafficking, and effector function. J Allergy Clin Immunol 111(6):1185–1199; quiz 1200PubMedCrossRefGoogle Scholar
  10. 10.
    Kunkel EJ, Butcher EC (2002) Chemokines and the tissue-specific migration of lymphocytes. Immunity 16(1):1–4PubMedCrossRefGoogle Scholar
  11. 11.
    Ardavin C (2003) Origin, precursors and differentiation of mouse dendritic cells. Nat Rev Immunol 3(7):582–590PubMedCrossRefGoogle Scholar
  12. 12.
    Gatti E, Pierre P (2003) Understanding the cell biology of antigen presentation: the dendritic cell contribution. Curr Opin Cell Biol 15(4):468–473PubMedCrossRefGoogle Scholar
  13. 13.
    Alon R, Feigelson S (2002) From rolling to arrest on blood vessels: leukocyte tap dancing on endothelial integrin ligands and chemokines at sub-second contacts. Semin Immunol 14(2):93–104PubMedCrossRefGoogle Scholar
  14. 14.
    Scapini P et al (2000) The neutrophil as a cellular source of chemokines. Immunol Rev 177:195–203PubMedCrossRefGoogle Scholar
  15. 15.
    Bochenska-Marciniak M et al (2003) The effect of recombinant interleukin-8 on eosinophils’ and neutrophils’ migration in vivo and in vitro. Allergy 58(8):795–801PubMedCrossRefGoogle Scholar
  16. 16.
    Yoshie O (2000) Role of chemokines in trafficking of lymphocytes and dendritic cells. Int J Hematol 72(4):399–407PubMedGoogle Scholar
  17. 17.
    Kawai T, Akira S (2006) Innate immune recognition of viral infection. Nat Immunol 7(2):131–137PubMedCrossRefGoogle Scholar
  18. 18.
    Villadangos JA (2001) Presentation of antigens by MHC class II molecules: getting the most out of them. Mol Immunol 38(5):329–346PubMedCrossRefGoogle Scholar
  19. 19.
    Gromme M, Neefjes J (2002) Antigen degradation or presentation by MHC class I molecules via classical and non-classical pathways. Mol Immunol 39(3–4):181–202PubMedCrossRefGoogle Scholar
  20. 20.
    Lennon-Dumenil AM et al (2002) A closer look at proteolysis and MHC-class-II-restricted antigen presentation. Curr Opin Immunol 14(1):15–21PubMedCrossRefGoogle Scholar
  21. 21.
    Gregers TF et al (2003) The cytoplasmic tail of invariant chain modulates antigen processing and presentation. Eur J Immunol 33(2):277–286PubMedCrossRefGoogle Scholar
  22. 22.
    Pathak SS, Lich JD, Blum JS (2001) Cutting edge: editing of recycling class II:peptide complexes by HLA-DM. J Immunol 167(2):632–635PubMedCrossRefGoogle Scholar
  23. 23.
    Goldberg AL et al (2002) The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Mol Immunol 39(3–4):147–164PubMedCrossRefGoogle Scholar
  24. 24.
    Gorbulev S, Abele R, Tampe R (2001) Allosteric crosstalk between peptide-binding, transport, and ATP hydrolysis of the ABC transporter TAP. Proc Natl Acad Sci USA 98(7):3732–3737PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Ackerman AL, Cresswell P (2004) Cellular mechanisms governing cross-presentation of exogenous antigens. Nat Immunol 5(7):678–684PubMedCrossRefGoogle Scholar
  26. 26.
    Ghendler Y et al (1998) One of the CD3epsilon subunits within a T cell receptor complex lies in close proximity to the Cbeta FG loop. J Exp Med 187(9):1529–1536PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Shinkai Y et al (1992) RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68(5):855–867PubMedCrossRefGoogle Scholar
  28. 28.
    Bjorkman PJ et al (1987) Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329(6139):506–512PubMedCrossRefGoogle Scholar
  29. 29.
    Fremont DH et al (1992) Crystal structures of two viral peptides in complex with murine MHC class I H-2Kb. Science 257(5072):919–927PubMedCrossRefGoogle Scholar
  30. 30.
    Garcia KC et al (1996) An alphabeta T cell receptor structure at 2.5 A and its orientation in the TCR-MHC complex. Science 274(5285):209–219PubMedCrossRefGoogle Scholar
  31. 31.
    Ding YH et al (1998) Two human T cell receptors bind in a similar diagonal mode to the HLA-A2/Tax peptide complex using different TCR amino acids. Immunity 8(4):403–411PubMedCrossRefGoogle Scholar
  32. 32.
    Hawse WF et al (2012) Cutting edge: evidence for a dynamically driven T cell signaling mechanism. J Immunol 188(12):5819–5823PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Hawse WF et al (2013) Peptide modulation of class I major histocompatibility complex protein molecular flexibility and the implications for immune recognition. J Biol Chem 288(34):24372–24381PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Hawse WF et al (2014) TCR scanning of peptide/MHC through complementary matching of receptor and ligand molecular flexibility. J Immunol 192(6):2885–2891PubMedCrossRefGoogle Scholar
  35. 35.
    Baker BM et al (2012) Structural and dynamic control of T-cell receptor specificity, cross-reactivity, and binding mechanism. Immunol Rev 250(1):10–31PubMedCrossRefGoogle Scholar
  36. 36.
    Li Y, Yin Y, Mariuzza RA (2013) Structural and biophysical insights into the role of CD4 and CD8 in T cell activation. Front Immunol 4:206PubMedPubMedCentralGoogle Scholar
  37. 37.
    Appleman LJ et al (2000) CD28 costimulation mediates T cell expansion via IL-2-independent and IL-2-dependent regulation of cell cycle progression. J Immunol 164(1):144–151PubMedCrossRefGoogle Scholar
  38. 38.
    Chan AC et al (1992) ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR zeta chain. Cell 71(4):649–662PubMedCrossRefGoogle Scholar
  39. 39.
    Chan AC et al (1995) Activation of ZAP-70 kinase activity by phosphorylation of tyrosine 493 is required for lymphocyte antigen receptor function. EMBO J 14(11):2499–2508PubMedPubMedCentralGoogle Scholar
  40. 40.
    Jordan MS, Singer AL, Koretzky GA (2003) Adaptors as central mediators of signal transduction in immune cells. Nat Immunol 4(2):110–116PubMedCrossRefGoogle Scholar
  41. 41.
    Harding FA et al (1992) CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 356(6370):607–609PubMedCrossRefGoogle Scholar
  42. 42.
    Geginat J et al (2013) The CD4-centered universe of human T cell subsets. Semin Immunol 25(4):252–262PubMedCrossRefGoogle Scholar
  43. 43.
    Murphy KM, Reiner SL (2002) The lineage decisions of helper T cells. Nat Rev Immunol 2(12):933–944PubMedCrossRefGoogle Scholar
  44. 44.
    Reis e Sousa C et al (1997) In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J Exp Med 186(11):1819–1829PubMedCrossRefGoogle Scholar
  45. 45.
    Manel N, Unutmaz D, Littman DR (2008) The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol 9(6):641–649PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Zhang N, Bevan MJ (2011) CD8(+) T cells: foot soldiers of the immune system. Immunity 35(2):161–168PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Thiery J et al (2011) Perforin pores in the endosomal membrane trigger the release of endocytosed granzyme B into the cytosol of target cells. Nat Immunol 12(8):770–777PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Lanzavecchia A (1990) Receptor-mediated antigen uptake and its effect on antigen presentation to class II-restricted T lymphocytes. Annu Rev Immunol 8:773–793PubMedCrossRefGoogle Scholar
  49. 49.
    Jaiswal AI, Croft M (1997) CD40 ligand induction on T cell subsets by peptide-presenting B cells: implications for development of the primary T and B cell response. J Immunol 159(5):2282–2291PubMedGoogle Scholar
  50. 50.
    Shapiro-Shelef M, Calame K (2005) Regulation of plasma-cell development. Nat Rev Immunol 5(3):230–242PubMedCrossRefGoogle Scholar
  51. 51.
    Kelsoe G (1996) The germinal center: a crucible for lymphocyte selection. Semin Immunol 8(3):179–184PubMedCrossRefGoogle Scholar
  52. 52.
    Ziegner M, Steinhauser G, Berek C (1994) Development of antibody diversity in single germinal centers: selective expansion of high-affinity variants. Eur J Immunol 24(10):2393–2400PubMedCrossRefGoogle Scholar
  53. 53.
    Stavnezer J (1996) Immunoglobulin class switching. Curr Opin Immunol 8(2):199–205PubMedCrossRefGoogle Scholar
  54. 54.
    Koshland ME (1985) The coming of age of the immunoglobulin J chain. Annu Rev Immunol 3:425–453PubMedCrossRefGoogle Scholar
  55. 55.
    Clark MR (1997) IgG effector mechanisms. Chem Immunol 65:88–110PubMedCrossRefGoogle Scholar
  56. 56.
    Sulica A et al (2001) Ig-binding receptors on human NK cells as effector and regulatory surface molecules. Int Rev Immunol 20(3–4):371–414PubMedCrossRefGoogle Scholar
  57. 57.
    Ward ES, Ghetie V (1995) The effector functions of immunoglobulins: implications for therapy. Ther Immunol 2(2):77–94PubMedGoogle Scholar
  58. 58.
    Brandtzaeg P (2003) Role of secretory antibodies in the defence against infections. Int J Med Microbiol 293(1):3–15PubMedCrossRefGoogle Scholar
  59. 59.
    Galli SJ, Tsai M (2012) IgE and mast cells in allergic disease. Nat Med 18(5):693–704PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Takahashi T, Sakaguchi S (2003) Naturally arising CD25+ CD4+ regulatory T cells in maintaining immunologic self-tolerance and preventing autoimmune disease. Curr Mol Med 3(8):693–706PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of ImmunologyUniversity of PittsburghPittsburghUSA

Personalised recommendations