Advertisement

Journal of Pharmacokinetics and Pharmacodynamics

, Volume 41, Issue 5, pp 401–413 | Cite as

Modeling the T cell immune response: a fascinating challenge

  • Penelope A. MorelEmail author
  • James R. Faeder
  • William F. Hawse
  • Natasa Miskov-Zivanov
Review Paper

Abstract

The immune system is designed to protect the organism from infection and to repair damaged tissue. An effective response requires recognition of the threat, the appropriate effector mechanism to clear the pathogen and a return to homeostasis with minimal damage to self-tissues. T cells play a central role in orchestrating the immune response at all stages of the response and have been the subject of intense study by both experimental immunologists and modelers. This review examines some of the more critical questions in T cell biology and describes the latest attempts to address those questions using approaches that combine mathematical modeling and experiments.

Keywords

T cell Signaling Mathematical modeling Immune regulation 

Notes

Acknowledgments

JRF and NMZ acknowledge funding from NIH grant P41 GM103712 and NSF Expeditions in Computing Grant (award 0926181). WFH was supported by NIH Grant T32 AI089443.

References

  1. 1.
    Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511PubMedGoogle Scholar
  2. 2.
    Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376. doi: 10.1146/annurev.immunol.21.120601.141126 PubMedGoogle Scholar
  3. 3.
    Davis BK, Wen H, Ting JP-Y (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 29:707–735 10.1146/annurev-immunol-031210-101405PubMedCentralPubMedGoogle Scholar
  4. 4.
    Sancho D, Reis e Sousa C (2012) Signaling by myeloid C-type lectin receptors in immunity and homeostasis. Annu Rev Immunol 30:491–529 10.1146/annurev-immunol-031210-101352PubMedGoogle Scholar
  5. 5.
    Zelenay S, Reis e Sousa C (2013) Adaptive immunity after cell death. Trends Immunol 34:329–335. doi: 10.1016/j.it.2013.03.005 PubMedGoogle Scholar
  6. 6.
    McHeyzer-Williams LJ, McHeyzer-Williams MG (2005) Antigen-specific memory B cell development. Annu Rev Immunol 23:487–513. doi: 10.1146/annurev.immunol.23.021704.115732 PubMedGoogle Scholar
  7. 7.
    Mueller SN, Gebhardt T, Carbone FR, Heath WR (2013) Memory T cell subsets, migration patterns, and tissue residence. Annu Rev Immunol 31:137–161. doi: 10.1146/annurev-immunol-032712-095954 PubMedGoogle Scholar
  8. 8.
    Nath I, Vemuri N, Reddi AL, Jain S, Brooks P, Colston MJ, Misra RS, Ramesh V (2000) The effect of antigen presenting cells on the cytokine profiles of stable and reactional lepromatous leprosy patients. Immunol Lett 75:69–76PubMedGoogle Scholar
  9. 9.
    Berg DJ, Davidson N, xFc, hn R, xFc, ller W, Menon S, Holland G, Thompson-Snipes L, Leach MW, Rennick D (1996) Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) TH1-like responses. J Clin Invest 98:1010–1020. doi: 10.1172/jci118861
  10. 10.
    Hunter Christopher A, Kastelein R (2012) Interleukin-27: balancing protective and pathological immunity. Immunity 37:960–969. doi: 10.1016/j.immuni.2012.11.003 PubMedGoogle Scholar
  11. 11.
    Rouse BT, Suvas S (2004) Regulatory cells and infectious agents: détentes cordiale and contraire. J Immunol 173:2211–2215PubMedGoogle Scholar
  12. 12.
    Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL (2002) CD4+ CD25 + regulatory T cells control Leishmania major persistence and immunity. Nature 420:502–507PubMedGoogle Scholar
  13. 13.
    Suzuki Y, Sher A, Yap G, Park D, Neyer LE, Liesenfeld O, Fort M, Kang H, Gufwoli E (2000) IL-10 is required for prevention of necrosis in the small intestine and mortality in both genetically resistant BALB/c and susceptible C57BL/6 mice following peroral infection with Toxoplasma gondii. J Immunol 164:5375–5382PubMedGoogle Scholar
  14. 14.
    Germain RN (2012) Maintaining system homeostasis: the third law of Newtonian immunology. Nat Immunol 13:902–906PubMedCentralPubMedGoogle Scholar
  15. 15.
    Burke MA, Morel BF, Oriss TB, Bray J, McCarthy SA, Morel PA (1997) Modeling the proliferative response of T cells to IL-2 and IL-4. Cell Immunol 178:42–52PubMedGoogle Scholar
  16. 16.
    Morel BF, Burke MA, Kalagnanam JR, McCarthy SA, Tweardy DJ, Morel PA (1996) Making sense of the combined effect of interleukin-2 and interleukin-4 on lymphocytes using a mathematical model. Bull Mathemat Biol 58:569–594Google Scholar
  17. 17.
    Morel PA (1988) Mathematical modeling of immunological reactions. Frontiers Biosci 3:338–347Google Scholar
  18. 18.
    Morel PA, Ta’asan S, Morel BF, Kirschner DE, Flynn JL (2006) New insights into mathematical modeling of the immune system. Immunol Res 36:157–165. doi: 10.1385/IR:36:1:157 PubMedGoogle Scholar
  19. 19.
    Cantrell DA, Smith KA (1984) The interleukin-2 T-cell system: a new cell growth model. Science 224:1312–1316PubMedGoogle Scholar
  20. 20.
    Schorle H, Holtschke T, Hunig T, Schimpl A, Horak I (1991) Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting. Nature 352:621–624PubMedGoogle Scholar
  21. 21.
    Sadlack B, Merz H, Schorle H, Schimpl A, Feller AC, Horak I (1993) Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75:253–261. doi: 10.1016/0092-8674(93)80067-O PubMedGoogle Scholar
  22. 22.
    Malek TR (2003) The main function of IL-2 is to promote the development of T regulatory cells. J Leukocyte Biol 74:961–965. doi: 10.1189/jlb.0603272 PubMedGoogle Scholar
  23. 23.
    Furtado GC, Curotto de Lafaille MA, Kutchukhidze N, Lafaille JJ (2002) Interleukin 2 signaling is required for CD4(+) regulatory T cell function. J Exp Med 196:851–857PubMedCentralPubMedGoogle Scholar
  24. 24.
    Tyson JJ, Novak B (2010) Functional motifs in biochemical reaction networks. Annu Rev Phys Chem 61:219–240. doi: 10.1146/annurev.physchem.012809.103457 PubMedCentralPubMedGoogle Scholar
  25. 25.
    Zinkernagel RM, Doherty PC (1975) H-2 compatability requirement for T-cell-mediated lysis of target cells infected with lymphocytic choriomeningitis virus. Different cytotoxic T-cell specificities are associated with structures coded for in H-2K or H-2D. J Exp Med 141:1427–1436. doi: 10.1084/jem.141.6.1427 PubMedGoogle Scholar
  26. 26.
    Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987) Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329:506–512PubMedGoogle Scholar
  27. 27.
    Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987) The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329:512–518PubMedGoogle Scholar
  28. 28.
    Ding Y-H, Smith KJ, Garboczi DN, Utz U, Biddison WE, Wiley DC (1998) Two human T cell receptors bind in a similar diagonal mode to the HLA-A2/Tax peptide complex using different TCR amino acids. Immunity 8:403–411. doi: 10.1016/S1074-7613(00)80546-4 PubMedGoogle Scholar
  29. 29.
    Speir JA, Garcia KC, Brunmark A, Degano M, Peterson PA, Teyton L, Wilson IA (1998) Structural basis of 2C TCR allorecognition of H-2Ld peptide complexes. Immunity 8:553–562. doi: 10.1016/S1074-7613(00)80560-9 PubMedGoogle Scholar
  30. 30.
    Garcia KC, Tallquist MD, Pease LR, Brunmark A, Scott CA, Degano M, Stura EA, Peterson PA, Wilson IA, Teyton L (1997) αβ T cell receptor interactions with syngeneic and allogeneic ligands: affinity measurements and crystallization. Proc Natl Acad Sci 94:13838–13843PubMedCentralPubMedGoogle Scholar
  31. 31.
    Margulies DH, Plaksin D, Khilko SN, Jelonek MT (1996) Studying interactions involving the T-cell antigen receptor by surface plasmon resonance. Curr Opin Immunol 8:262–270PubMedGoogle Scholar
  32. 32.
    Hogquist KA, Baldwin TA, Jameson SC (2005) Central tolerance: learning self-control in the thymus. Nat Rev Immunol 5:772–782PubMedGoogle Scholar
  33. 33.
    Yates AJ (2014) Theories and quantification of thymic selection. Front Immunol 5:13. doi: 10.3389/fimmu.2014.00013 PubMedCentralPubMedGoogle Scholar
  34. 34.
    Johnson PL, Yates AJ, Goronzy JJ, Antia R (2012) Peripheral selection rather than thymic involution explains sudden contraction in naive CD4 T-cell diversity with age. Proc Natl Acad Sci USA 109:21432–21437. doi: 10.1073/pnas.1209283110 PubMedCentralPubMedGoogle Scholar
  35. 35.
    Johnson PL, Goronzy JJ, Antia R (2014) A population biological approach to understanding the maintenance and loss of the T cell repertoire during aging. Immunology. doi: 10.1111/imm.12244 Google Scholar
  36. 36.
    Van Den Berg HA, Rand DA, Burroughs NJ (2001) A reliable and safe T cell repertoire based on low-affinity T cell receptors. J Theor Biol 209:465–486. doi: 10.1006/jtbi.2001.2281 Google Scholar
  37. 37.
    Hapuarachchi T, Lewis J, Callard RE (2013) A mechanistic model for naive CD4 T cell homeostasis in healthy adults and children. Front Immunol 4:366. doi: 10.3389/fimmu.2013.00366 PubMedCentralPubMedGoogle Scholar
  38. 38.
    Sawicka M, Stritesky GL, Reynolds J, Abourashchi N, Lythe G, Molina-Paris C, Hogquist KA (2014) From pre-DP, post-DP, SP4, and SP8 thymocyte cell counts to a dynamical model of cortical and medullary selection. Front Immunol 5:19. doi: 10.3389/fimmu.2014.00019 PubMedCentralPubMedGoogle Scholar
  39. 39.
    Sinclair C, Bains I, Yates AJ, Seddon B (2013) Asymmetric thymocyte death underlies the CD4:CD8 T-cell ratio in the adaptive immune system. Proc Natl Acad Sci USA 110:E2905–E2914. doi: 10.1073/pnas.1304859110 PubMedCentralPubMedGoogle Scholar
  40. 40.
    Mehr R, Globerson A, Perelson AS (1995) Modeling positive and negative selection and differentiation processes in the thymus. J Theor Biol 175:103–126. doi: 10.1006/jtbi.1995.0124 PubMedGoogle Scholar
  41. 41.
    Thomas-Vaslin V, Altes HK, de Boer RJ, Klatzmann D (2008) Comprehensive assessment and mathematical modeling of T cell population dynamics and homeostasis. J Immunol 180:2240–2250PubMedGoogle Scholar
  42. 42.
    Stritesky GL, Xing Y, Erickson JR, Kalekar LA, Wang X, Mueller DL, Jameson SC, Hogquist KA (2013) Murine thymic selection quantified using a unique method to capture deleted T cells. Proc Natl Acad Sci USA 110:4679–4684. doi: 10.1073/pnas.1217532110 PubMedCentralPubMedGoogle Scholar
  43. 43.
    Bhakta NR, Oh DY, Lewis RS (2005) Calcium oscillations regulate thymocyte motility during positive selection in the three-dimensional thymic environment. Nat Immunol 6:143–151. http://www.nature.com/ni/journal/v6/n2/suppinfo/ni1161_S1.html
  44. 44.
    Liu X, Bosselut R (2004) Duration of TCR signaling controls CD4-CD8 lineage differentiation in vivo. Nat Immunol 5:280–288. doi: 10.1038/ni1040 PubMedGoogle Scholar
  45. 45.
    Palmer E, Naeher D (2009) Affinity threshold for thymic selection through a T-cell receptor-co-receptor zipper. Nat Rev Immunol 9:207–213PubMedGoogle Scholar
  46. 46.
    Mason D (1998) A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol Today 19:395–404PubMedGoogle Scholar
  47. 47.
    Zarnitsyna VI, Evavold BD, Schoettle LN, Blattman JN, Antia R (2013) Estimating the Diversity, Completeness, and Cross-Reactivity of the T Cell Repertoire. Front Immunol 4:485. doi: 10.3389/fimmu.2013.00485 PubMedCentralPubMedGoogle Scholar
  48. 48.
    Hoerter JA, Brzostek J, Artyomov MN, Abel SM, Casas J, Rybakin V, Ampudia J, Lotz C, Connolly JM, Chakraborty AK, Gould KG, Gascoigne NR (2013) Coreceptor affinity for MHC defines peptide specificity requirements for TCR interaction with coagonist peptide-MHC. J Exp Med 210:1807–1821. doi: 10.1084/jem.20122528 PubMedCentralPubMedGoogle Scholar
  49. 49.
    Yachi PP, Ampudia J, Gascoigne NRJ, Zal T (2005) Nonstimulatory peptides contribute to antigen-induced CD8-T cell receptor interaction at the immunological synapse. Nat Immunol 6:785–792. http://www.nature.com/ni/journal/v6/n8/suppinfo/ni1220_S1.html
  50. 50.
    Su LF, Davis MM (2013) Antiviral memory phenotype T cells in unexposed adults. Immunol Rev 255:95–109. doi: 10.1111/imr.12095 PubMedGoogle Scholar
  51. 51.
    Su LF, Kidd BA, Han A, Kotzin JJ, Davis MM (2013) Virus-specific CD4(+) memory-phenotype T cells are abundant in unexposed adults. Immunity 38:373–383. doi: 10.1016/j.immuni.2012.10.021 PubMedCentralPubMedGoogle Scholar
  52. 52.
    Moon JJ, Chu HH, Pepper M, McSorley SJ, Jameson SC, Kedl Ross M, Jenkins MK (2007) Naive CD4+ T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27:203–213. doi: 10.1016/j.immuni.2007.07.007 PubMedCentralPubMedGoogle Scholar
  53. 53.
    Jenkins MK, Moon JJ (2012) The role of naive T cell precursor frequency and recruitment in dictating immune response magnitude. J Immunol 188:4135–4140. doi: 10.4049/jimmunol.1102661 PubMedCentralPubMedGoogle Scholar
  54. 54.
    Six A, Mariotti-Ferrandiz ME, Chaara W, Magadan S, Pham HP, Lefranc MP, Mora T, Thomas-Vaslin V, Walczak AM, Boudinot P (2013) The past, present, and future of immune repertoire biology: the rise of next-generation repertoire analysis. Front Immunol 4:413. doi: 10.3389/fimmu.2013.00413 PubMedCentralPubMedGoogle Scholar
  55. 55.
    Pannetier C, Cochet M, Darche S, Casrouge A, Zoller M, Kourilsky P (1993) The sizes of the CDR3 hypervariable regions of the murine T-cell receptor beta chains vary as a function of the recombined germ-line segments. Proc Natl Acad Sci USA 90:4319–4323PubMedCentralPubMedGoogle Scholar
  56. 56.
    He M, Tomfohr JK, Devlin BH, Sarzotti M, Markert ML, Kepler TB (2005) SpA: web-accessible spectratype analysis: data management, statistical analysis and visualization. Bioinformatics 21:3697–3699. doi: 10.1093/bioinformatics/bti600 PubMedGoogle Scholar
  57. 57.
    Kepler TB, He M, Tomfohr JK, Devlin BH, Sarzotti M, Markert ML (2005) Statistical analysis of antigen receptor spectratype data. Bioinformatics 21:3394–3400. doi: 10.1093/bioinformatics/bti539 PubMedGoogle Scholar
  58. 58.
    Miqueu P, Guillet M, Degauque N, Dore JC, Soulillou JP, Brouard S (2007) Statistical analysis of CDR3 length distributions for the assessment of T and B cell repertoire biases. Mol Immunol 44:1057–1064. doi: 10.1016/j.molimm.2006.06.026 PubMedGoogle Scholar
  59. 59.
    Arstila TP, Casrouge A, Baron V, Even J, Kanellopoulos J, Kourilsky P (1999) A direct estimate of the human alphabeta T cell receptor diversity. Science 286:958–961PubMedGoogle Scholar
  60. 60.
    Turchaninova MA, Britanova OV, Bolotin DA, Shugay M, Putintseva EV, Staroverov DB, Sharonov G, Shcherbo D, Zvyagin IV, Mamedov IZ, Linnemann C, Schumacher TN, Chudakov DM (2013) Pairing of T-cell receptor chains via emulsion PCR. Eur J Immunol 43:2507–2515. doi: 10.1002/eji.201343453 PubMedGoogle Scholar
  61. 61.
    Michaeli M, Barak M, Hazanov L, Noga H, Mehr R (2013) Automated analysis of immunoglobulin genes from high-throughput sequencing: life without a template. J Clin Bioinform 3:15Google Scholar
  62. 62.
    Shapiro E, Biezuner T, Linnarsson S (2013) Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 14:618–630. doi: 10.1038/nrg3542 PubMedGoogle Scholar
  63. 63.
    Newell EW, Davis MM (2014) Beyond model antigens: high-dimensional methods for the analysis of antigen-specific T cells. Nat Biotechnol 32:149–157. doi: 10.1038/nbt.2783 PubMedCentralPubMedGoogle Scholar
  64. 64.
    Wang C, Sanders CM, Yang Q, Schroeder HW, Wang E, Babrzadeh F, Gharizadeh B, Myers RM, Hudson JR, Davis RW, Han J (2010) High throughput sequencing reveals a complex pattern of dynamic interrelationships among human T cell subsets. Proc Natl Acad Sci 107:1518–1523. doi: 10.1073/pnas.0913939107 PubMedCentralPubMedGoogle Scholar
  65. 65.
    Fohse L, Suffner J, Suhre K, Wahl B, Lindner C, Lee CW, Schmitz S, Haas JD, Lamprecht S, Koenecke C, Bleich A, Hammerling GJ, Malissen B, Suerbaum S, Forster R, Prinz I (2011) High TCR diversity ensures optimal function and homeostasis of Foxp3+ regulatory T cells. Eur J Immunol 41:3101–3113. doi: 10.1002/eji.201141986 PubMedGoogle Scholar
  66. 66.
    Wing JB, Sakaguchi S (2011) TCR diversity and Treg cells, sometimes more is more. Eur J Immunol 41:3097–3100. doi: 10.1002/eji.201142115 PubMedGoogle Scholar
  67. 67.
    Ferreira C, Singh Y, Furmanski AL, Wong FS, Garden OA, Dyson J (2009) Non-obese diabetic mice select a low-diversity repertoire of natural regulatory T cells. Proc Natl Acad Sci USA 106:8320–8325. doi: 10.1073/pnas.0808493106 PubMedCentralPubMedGoogle Scholar
  68. 68.
    Caridade M, Oliveira VG, Agua-Doce A, Graca L, Ribeiro RM (2013) The fate of CD4+ T cells under tolerance-inducing stimulation: a modeling perspective. Immunol Cell Biol 91:652–660. doi: 10.1038/icb.2013.63 PubMedGoogle Scholar
  69. 69.
    Gowans JL, Knight EJ (1964) The route of re-circulation of lymphocytes in the rat. Proc R Soc Lond B 159:257–282PubMedGoogle Scholar
  70. 70.
    von Andrian UH, Mempel TR (2003) Homing and cellular traffic in lymph nodes. Nat Rev Immunol 3:867–878. doi: 10.1038/nri1222 Google Scholar
  71. 71.
    Kirberg J, Berns A, von Boehmer H (1997) Peripheral T cell survival requires continual ligation of the T cell receptor to major histocompatibility complex-encoded molecules. J Exp Med 186:1269–1275PubMedCentralPubMedGoogle Scholar
  72. 72.
    Martin B, Becourt C, Bienvenu B, Lucas B (2006) Self-recognition is crucial for maintaining the peripheral CD4+ T-cell pool in a nonlymphopenic environment. Blood 108:270–277. doi: 10.1182/blood-2006-01-0017 PubMedGoogle Scholar
  73. 73.
    Viret C, Wong FS, Janeway CA Jr (1999) Designing and maintaining the mature TCR repertoire: the continuum of self-peptide:self-MHC complex recognition. Immunity 10:559–568PubMedGoogle Scholar
  74. 74.
    Sprent J (1973) Circulating T and B lymphocytes of the mouse. I. Migratory properties. Cell Immunol 7:10–39PubMedGoogle Scholar
  75. 75.
    Smith ME, Ford WL (1983) The recirculating lymphocyte pool of the rat: a systematic description of the migratory behaviour of recirculating lymphocytes. Immunology 49:83–94PubMedCentralPubMedGoogle Scholar
  76. 76.
    Stekel DJ, Parker CE, Nowak MA (1997) A model of lymphocyte recirculation. Immunol Today 18:216–221PubMedGoogle Scholar
  77. 77.
    Miller MJ, Wei SH, Parker I, Cahalan MD (2002) Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296:1869–1873. doi: 10.1126/science.1070051 PubMedGoogle Scholar
  78. 78.
    Sumen C, Mempel TR, Mazo IB, von Andrian UH (2004) Intravital microscopy: visualizing immunity in context. Immunity 21:315–329. doi: 10.1016/j.immuni.2004.08.006 PubMedGoogle Scholar
  79. 79.
    Mandl JN, Liou R, Klauschen F, Vrisekoop N, Monteiro JP, Yates AJ, Huang AY, Germain RN (2012) Quantification of lymph node transit times reveals differences in antigen surveillance strategies of naïve CD4+ and CD8+ T cells. Proc Natl Acad Sci 109:18036–18041. doi: 10.1073/pnas.1211717109 PubMedCentralPubMedGoogle Scholar
  80. 80.
    Gottschalk RA, Hathorn MM, Beuneu H, Corse E, Dustin ML, Altan-Bonnet G, Allison JP (2012) Distinct influences of peptide-MHC quality and quantity on in vivo T-cell responses. Proc Natl Acad Sci USA 109:881–886. doi: 10.1073/pnas.1119763109 PubMedCentralPubMedGoogle Scholar
  81. 81.
    Gong C, Linderman JJ, Kirschner D (2014) Harnessing the heterogeneity of T cell differentiation fate to fine-tune generation of effector and memory T cells. Front Immunol 5:57. doi: 10.3389/fimmu.2014.00057 PubMedCentralPubMedGoogle Scholar
  82. 82.
    Lee M, Mandl JN, Germain RN, Yates AJ (2012) The race for the prize: T-cell trafficking strategies for optimal surveillance. Blood 120:1432–1438. doi: 10.1182/blood-2012-04-424655 PubMedCentralPubMedGoogle Scholar
  83. 83.
    Gong C, Mattila JT, Miller M, Flynn JL, Linderman JJ, Kirschner D (2013) Predicting lymph node output efficiency using systems biology. J Theor Biol 335:169–184. doi: 10.1016/j.jtbi.2013.06.016 PubMedCentralPubMedGoogle Scholar
  84. 84.
    Mirsky HP, Miller MJ, Linderman JJ, Kirschner DE (2011) Systems biology approaches for understanding cellular mechanisms of immunity in lymph nodes during infection. J Theor Biol 287:160–170. doi: 10.1016/j.jtbi.2011.06.037 PubMedGoogle Scholar
  85. 85.
    van der Merwe PA, Dushek O (2011) Mechanisms for T cell receptor triggering. Nat Rev Immunol 11:47–55. doi: 10.1038/nri2887 PubMedGoogle Scholar
  86. 86.
    Chakraborty AK, Das J (2010) Pairing computation with experimentation: a powerful coupling for understanding T cell signalling. Nat Rev Immunol 10:59–71. doi: 10.1038/nri2688 PubMedGoogle Scholar
  87. 87.
    Valitutti S, Muller S, Cella M, Padovan E, Lanzavecchia A (1995) Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature 375:148–151. doi: 10.1038/375148a0 PubMedGoogle Scholar
  88. 88.
    Goldstein B, Faeder JR, Hlavacek WS (2004) Mathematical and computational models of immune-receptor signalling. Nat Rev Immunol 4:445–456PubMedGoogle Scholar
  89. 89.
    McKeithan TW (1995) Kinetic proofreading in T-cell receptor signal transduction. Proc Natl Acad Sci USA 92:5042–5046PubMedCentralPubMedGoogle Scholar
  90. 90.
    Rabinowitz JD, Beeson C, Lyons DS, Davis MM, McConnell HM (1996) Kinetic discrimination in T-cell activation. Proc Natl Acad Sci USA 93:1401–1405PubMedCentralPubMedGoogle Scholar
  91. 91.
    Sloan-Lancaster J, Allen PM (1996) Altered peptide ligand–induced partial T cell activation: molecular mechanisms and role in T cell biology. Annu Rev Immunol 14:1–27. doi: 10.1146/annurev.immunol.14.1.1 PubMedGoogle Scholar
  92. 92.
    Gascoigne NR, Zal T, Alam SM (2001) T-cell receptor binding kinetics in T-cell development and activation. Expert Rev Mol Med 2001:1–17. doi: 10.1017/S1462399401002502 PubMedGoogle Scholar
  93. 93.
    Tkach K, Altan-Bonnet G (2013) T cell responses to antigen: hasty proposals resolved through long engagements. Curr Opin Immunol 25:120–125. doi: 10.1016/j.coi.2012.12.001 PubMedCentralPubMedGoogle Scholar
  94. 94.
    Altan-Bonnet G, Germain RN (2005) Modeling T cell antigen discrimination based on feedback control of digital ERK responses. PLoS Biol 3:e356. doi: 10.1371/journal.pbio.0030356 PubMedCentralPubMedGoogle Scholar
  95. 95.
    Das J, Ho M, Zikherman J, Govern C, Yang M, Weiss A, Chakraborty AK, Roose JP (2009) Digital signaling and hysteresis characterize ras activation in lymphoid cells. Cell 136:337–351. doi: 10.1016/j.cell.2008.11.051 PubMedCentralPubMedGoogle Scholar
  96. 96.
    Schmeitz C, Hernandez-Vargas EA, Fliegert R, Guse AH, Meyer-Hermann M (2013) A mathematical model of T lymphocyte calcium dynamics derived from single transmembrane protein properties. Front Immunol 4:277. doi: 10.3389/fimmu.2013.00277 PubMedCentralPubMedGoogle Scholar
  97. 97.
    Monks CRF, Freiberg BA, Kupfer H, Sciaky N, Kupfer A (1998) Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395:82–86PubMedGoogle Scholar
  98. 98.
    Xie J, Tato CM, Davis MM (2013) How the immune system talks to itself: the varied role of synapses. Immunol Rev 251:65–79. doi: 10.1111/imr.12017 PubMedCentralPubMedGoogle Scholar
  99. 99.
    Dustin ML, Depoil D (2011) New insights into the T cell synapse from single molecule techniques. Nat Rev Immunol 11:672–684. doi: 10.1038/nri3066 PubMedCentralPubMedGoogle Scholar
  100. 100.
    Basak S, Behar M, Hoffmann A (2012) Lessons from mathematically modeling the NF-kappaB pathway. Immunol Rev 246:221–238. doi: 10.1111/j.1600-065X.2011.01092.x PubMedCentralPubMedGoogle Scholar
  101. 101.
    Behar M, Barken D, Werner SL, Hoffmann A (2013) The dynamics of signaling as a pharmacological target. Cell 155:448–461. doi: 10.1016/j.cell.2013.09.018 PubMedGoogle Scholar
  102. 102.
    Ramshaw IA, Eidinger D (1979) The in vitro induction of T cells which mediate delayed-type hypersensitivity toward horse red blood cells. Cell Immunol 42:42–47PubMedGoogle Scholar
  103. 103.
    Bretscher PA, Wei G, Menon JN, Bielefeldt-Ohmann H (1992) Establishment of stable, cell-mediated immunity that makes “susceptible” mice resistant to Leishmania major. Science 257:539–542PubMedGoogle Scholar
  104. 104.
    Constant SL, Bottomly K (1997) Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches. Annu Rev Immunol 15:297–322PubMedGoogle Scholar
  105. 105.
    Hosken NA, Shibuya K, Heath AW, Murphy KM, O’Garra A (1995) The effect of antigen dose on CD4+ T helper cell phenotype development in a T cell receptor-alpha beta-transgenic model. J Exp Med 182:1579–1584PubMedGoogle Scholar
  106. 106.
    Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol 28:445–489. doi: 10.1146/annurev-immunol-030409-101212 PubMedCentralPubMedGoogle Scholar
  107. 107.
    Hong T, Xing J, Li L, Tyson JJ (2011) A mathematical model for the reciprocal differentiation of T helper 17 cells and induced regulatory T cells. PLoS Comput Biol 7:e1002122. doi: 10.1371/journal.pcbi.1002122 PubMedCentralPubMedGoogle Scholar
  108. 108.
    Mendoza L (2006) A network model for the control of the differentiation process in Th cells. Biosystems 84:101–114. doi: 10.1016/j.biosystems.2005.10.004 PubMedGoogle Scholar
  109. 109.
    Naldi A, Carneiro J, Chaouiya C, Thieffry D (2010) Diversity and plasticity of Th cell types predicted from regulatory network modelling. PLoS Comput Biol 6:e1000912. doi: 10.1371/journal.pcbi.1000912 PubMedCentralPubMedGoogle Scholar
  110. 110.
    van den Ham HJ, de Boer RJ (2012) Cell division curtails helper phenotype plasticity and expedites helper T-cell differentiation. Immunol Cell Biol 90:860–868. doi: 10.1038/icb.2012.23 PubMedGoogle Scholar
  111. 111.
    Turner MS, Kane LP, Morel PA (2009) Dominant role of antigen dose in CD4+ Foxp3+ regulatory T cell induction and expansion. J Immunol 183:4895–4903. doi: 10.4049/jimmunol.0901459 PubMedCentralPubMedGoogle Scholar
  112. 112.
    Daniel C, Weigmann B, Bronson R, von Boehmer H (2011) Prevention of type 1 diabetes in mice by tolerogenic vaccination with a strong agonist insulin mimetope. J Exp Med 208:1501–1510. doi: 10.1084/jem.20110574 PubMedCentralPubMedGoogle Scholar
  113. 113.
    Gottschalk RA, Corse E, Allison JP (2010) TCR ligand density and affinity determine peripheral induction of Foxp3 in vivo. J Exp Med 207:1701–1711. doi: 10.1084/jem.20091999 PubMedCentralPubMedGoogle Scholar
  114. 114.
    Kretschmer K, Apostolou I, Hawiger D, Khazaie K, Nussenzweig MC, von Boehmer H (2005) Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol 6:1219–1227PubMedGoogle Scholar
  115. 115.
    Haxhinasto S, Mathis D, Benoist C (2008) The AKT-mTOR axis regulates de novo differentiation of CD4+ Foxp3+ cells. J Exp Med 205:565–574PubMedCentralPubMedGoogle Scholar
  116. 116.
    Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, Knight ZA, Cobb BS, Cantrell D, O’Connor E, Shokat KM, Fisher AG, Merkenschlager M (2008) T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci USA 105:7797–7802PubMedCentralPubMedGoogle Scholar
  117. 117.
    Turner MS, Isse K, Turnquist HR, Morel PA (2014) Low TCR signal strength induces combined expansion of Th2 and regulatory T cell populations that protect mice from the development of type 1 diabetes. Diabetologia 57(7):1428–1436Google Scholar
  118. 118.
    Miskov-Zivanov N, Turner MS, Kane LP, Morel PA, Faeder JR (2013) The duration of T cell stimulation is a critical determinant of cell fate and plasticity. Sci Signal 6:ra97. doi: 10.1126/scisignal.2004217
  119. 119.
    Wang RS, Saadatpour A, Albert R (2012) Boolean modeling in systems biology: an overview of methodology and applications. Phys Biol 9:055001. doi: 10.1088/1478-3975/9/5/055001 PubMedGoogle Scholar
  120. 120.
    Feinerman O, Veiga J, Dorfman JR, Germain RN, Altan-Bonnet G (2008) Variability and robustness in T cell activation from regulated heterogeneity in protein levels. Science 321:1081–1084. doi: 10.1126/science.1158013 PubMedCentralPubMedGoogle Scholar
  121. 121.
    Liston A, Gray DH (2014) Homeostatic control of regulatory T cell diversity. Nat Rev Immunol 14:154–165. doi: 10.1038/nri3605 PubMedGoogle Scholar
  122. 122.
    Lan RY, Selmi C, Gershwin ME (2008) The regulatory, inflammatory, and T cell programming roles of interleukin-2 (IL-2). J Autoimmun 31:7–12. doi: 10.1016/j.jaut.2008.03.002 PubMedGoogle Scholar
  123. 123.
    Feinerman O, Jentsch G, Tkach KE, Coward JW, Hathorn MM, Sneddon MW, Emonet T, Smith KA, Altan-Bonnet G (2010) Single-cell quantification of IL-2 response by effector and regulatory T cells reveals critical plasticity in immune response. Mol Syst Biol 6:437. doi: 10.1038/msb.2010.90 PubMedCentralPubMedGoogle Scholar
  124. 124.
    Tang Q, Adams JY, Penaranda C, Melli K, Piaggio E, Sgouroudis E, Piccirillo CA, Salomon BL, Bluestone JA (2008) Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 28:687–697. doi: 10.1016/j.immuni.2008.03.016 PubMedCentralPubMedGoogle Scholar
  125. 125.
    Dendrou CA, Wicker LS (2008) The IL-2/CD25 pathway determines susceptibility to T1D in humans and NOD mice. J Clin Immunol 28:685–696. doi: 10.1007/s10875-008-9237-9 PubMedGoogle Scholar
  126. 126.
    Boyman O, Surh CD, Sprent J (2006) Potential use of IL-2/anti-IL-2 antibody immune complexes for the treatment of cancer and autoimmune disease. Expert opinion on biological therapy 6:1323–1331. doi: 10.1517/14712598.6.12.1323 PubMedGoogle Scholar
  127. 127.
    Garcia-Martinez K, Leon K (2010) Modeling the role of IL-2 in the interplay between CD4+ helper and regulatory T cells: assessing general dynamical properties. J Theor Biol 262:720–732. doi: 10.1016/j.jtbi.2009.10.025 S0022-5193(09)00506-2 [pii]PubMedGoogle Scholar
  128. 128.
    Leon K, Garcia-Martinez K, Carmenate T (2013) Mathematical models of the impact of IL2 modulation therapies on T Cell dynamics. Front Immunol 4:439. doi: 10.3389/fimmu.2013.00439 PubMedCentralPubMedGoogle Scholar
  129. 129.
    Butler TC, Kardar M, Chakraborty AK (2013) Quorum sensing allows T cells to discriminate between self and nonself. Proc Natl Acad Sci USA 110:11833–11838. doi: 10.1073/pnas.1222467110 PubMedCentralPubMedGoogle Scholar
  130. 130.
    Mamchak AA, Manenkova Y, Leconet W, Zheng Y, Chan JR, Stokes CL, Shoda LK, von Herrath M, Bresson D (2012) Preexisting autoantibodies predict efficacy of oral insulin to cure autoimmune diabetes in combination with anti-CD3. Diabetes 61:1490–1499. doi: 10.2337/db11-1304 PubMedCentralPubMedGoogle Scholar
  131. 131.
    Bresson D, Togher L, Rodrigo E, Chen Y, Bluestone JA, Herold KC, von Herrath M (2006) Anti-CD3 and nasal proinsulin combination therapy enhances remission from recent-onset autoimmune diabetes by inducing Tregs. J Clin Investig 116:1371–1381. doi: 10.1172/jci27191 PubMedCentralPubMedGoogle Scholar
  132. 132.
    Chatenoud L, Thervet E, Primo J, Bach JF (1994) Anti-CD3 antibody induces long term remission of overt autoimmunity in nonobese diabetic mice. Proc Natl Acad Sci USA 91:123–127PubMedCentralPubMedGoogle Scholar
  133. 133.
    Fernandes P, Jain P, Moita C (2012) Training experimental biologists in bioinformatics. Advances in bioinformatics 2012:672749. doi: 10.1155/2012/672749 PubMedCentralPubMedGoogle Scholar
  134. 134.
    Loman N, Watson M (2013) So you want to be a computational biologist? Nat Biotechnol 31:996–998. doi: 10.1038/nbt.2740 PubMedGoogle Scholar
  135. 135.
    Faeder JR, Hlavacek WS, Reischl I, Blinov ML, Metzger H, Redondo A, Wofsy C, Goldstein B (2003) Investigation of early events in Fc epsilon RI-mediated signaling using a detailed mathematical model. J Immunol 170:3769–3781PubMedGoogle Scholar
  136. 136.
    Lipniacki T, Hat B, Faeder JR, Hlavacek WS (2008) Stochastic effects and bistability in T cell receptor signaling. J Theor Biol 254:110–122. doi: 10.1016/j.jtbi.2008.05.001 PubMedCentralPubMedGoogle Scholar
  137. 137.
    Chylek LA, Harris LA, Tung CS, Faeder JR, Lopez CF, Hlavacek WS (2013) Rule-based modeling: a computational approach for studying biomolecular site dynamics in cell signaling systems. Wiley Interdiscip Rev Syst Biol Med. doi: 10.1002/wsbm.1245 PubMedGoogle Scholar
  138. 138.
    Saez-Rodriguez J, Simeoni L, Lindquist JA, Hemenway R, Bommhardt U, Arndt B, Haus U-U, Weismantel R, Gilles ED, Klamt S, Schraven B (2007) A logical model provides insights into T cell receptor signaling. PLoS Comput Biol 3:e163. doi: 10.1371/journal.pcbi.0030163 PubMedCentralPubMedGoogle Scholar
  139. 139.
    Klamt S, Saez-Rodriguez J, Lindquist JA, Simeoni L, Gilles ED (2006) A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinform 7:56. doi: 10.1186/1471-2105-7-56 Google Scholar
  140. 140.
    Narang V, Decraene J, Wong SY, Aiswarya BS, Wasem AR, Leong SR, Gouaillard A (2012) Systems immunology: a survey of modeling formalisms, applications and simulation tools. Immunol Res 53:251–265. doi: 10.1007/s12026-012-8305-7 PubMedGoogle Scholar
  141. 141.
    Germain RN, Meier-Schellersheim M, Nita-Lazar A, Fraser IDC (2011) Systems biology in immunology: a computational modeling perspective. Annu Rev Immunol 29:527–585. doi: 10.1146/annurev-immunol-030409-101317 PubMedCentralPubMedGoogle Scholar
  142. 142.
    Kirschner DE, Chang ST, Riggs TW, Perry N, Linderman JJ (2007) Toward a multiscale model of antigen presentation in immunity. Immunol Rev 216:93–118. doi: 10.1111/j.1600-065X.2007.00490.x PubMedGoogle Scholar
  143. 143.
    Sadot A, Sarbu S, Kesseli J, Amir-Kroll H, Zhang W, Nykter M, Shmulevich I (2013) Information-theoretic analysis of the dynamics of an executable biological model. PLoS ONE 8:e59303. doi: 10.1371/journal.pone.0059303 PubMedCentralPubMedGoogle Scholar
  144. 144.
    Faeder JR, Blinov ML, Hlavacek WS (2009) Rule-based modeling of biochemical systems with BioNetGen. Methods Mol Biol 500:113–167. doi: 10.1007/978-1-59745-525-1_5 PubMedGoogle Scholar
  145. 145.
    Zhang F, Angermann BR, Meier-Schellersheim M (2013) The simmune modeler visual interface for creating signaling networks based on bi-molecular interactions. Bioinformatics 29:1229–1230. doi: 10.1093/bioinformatics/btt134 PubMedCentralPubMedGoogle Scholar
  146. 146.
    Lizée G, Overwijk WW, Radvanyi L, Gao J, Sharma P, Hwu P (2013) Harnessing the power of the immune system to target cancer. Annu Rev Med 64:71–90. doi: 10.1146/annurev-med-112311-083918 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Penelope A. Morel
    • 1
    Email author
  • James R. Faeder
    • 2
  • William F. Hawse
    • 1
  • Natasa Miskov-Zivanov
    • 2
    • 3
  1. 1.Departments of ImmunologyUniversity of PittsburghPittsburghUSA
  2. 2.Departments of Computational and Systems BiologyUniversity of PittsburghPittsburghUSA
  3. 3.Computer Science DepartmentCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations