Skip to main content

Advertisement

Log in

D optimal designs for three Poisson dose–response models

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

The objective of this paper was to find and investigate the performance of the D optimal designs for three Poisson dose–response models. Phase II dose ranging studies are pivotal in the drug development program, being used to select dose(s) for phase III. Count data is encountered in a number of clinical areas. The Poisson distribution provides an intuitive platform for modelling such data, especially when combined with random effects which allow subjects to differ in their response rates. This work investigated three Poisson dose–response models of increasing complexity. A simple Emax model was used to describe the drug effect, and D optimal designs under a range of different parameter values (scenarios) were found. The relative performances between scenarios were assessed using: the precision of all parameters, the precision of the drug effect parameters, and the percent coefficient of variation (%CV) of the ED50 parameter. The results showed that the D optimal designs were similar across models and scenarios, with the D optimal designs consisting of placebo, the maximum dose, and a dose just below the ED50. However the relative performance of the optimal designs was very different. For example, with 1,000 subjects, the %CV of the ED50 parameter ranged from 1.4 to 91 %. Performance typically improved with higher baseline counts, smaller random effects, and larger Emax. This work introduces a framework for determining and evaluating the performance of D optimal designs for phase II dose ranging studies with count data as the primary endpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sheiner LB (1997) Learning versus confirming in clinical drug development. Clin Pharmacol Ther 61(3):275–291

    Article  PubMed  CAS  Google Scholar 

  2. Snoeck E, Stockis A (2007) Dose-response population analysis of levetiracetam add-on treatment in refractory epileptic patients with partial onset seizures. Epilepsy Res 73(3):284–291

    Article  PubMed  CAS  Google Scholar 

  3. Gupta SK, Sathyan G, Lindemulder EA, Ho PL, Sheiner LB, Aarons L (1999) Quantitative characterization of therapeutic index: application of mixed-effects modeling to evaluate oxybutynin dose-efficacy and dose-side effect relationships. Clin Pharmacol Ther 65(6):672–684

    Article  PubMed  CAS  Google Scholar 

  4. Poisson SD (1837) Probabilité jugements en matière criminelle et en matière civile précédées règles générales calcul probabilitiés (Paris). Bachelier, Paris, p 206

    Google Scholar 

  5. Atkinson AC, Donev AN (1992) Optimum experimental designs. (Oxford statistical science series; 8). Oxford University Press, Oxford

  6. Chaloner K, Verdinelli I (1995) Bayesian experimental design: a review. Stat Sci 10(3):273–304

    Article  Google Scholar 

  7. Mentre F, Mallet A, Baccar D (1997) Optimal design in random-effects regression models. Biometrika 84(2):429–442

    Article  Google Scholar 

  8. Ogungbenro K, Aarons L (2008) Optimisation of sampling windows design for population pharmacokinetic experiments. J Pharmacokinet Pharmacodyn 35(4):465–482

    Article  PubMed  Google Scholar 

  9. Chenel M, Bouzom F, Cazade F, Ogungbenro K, Aarons L, Mentré F (2008) Drug-drug interaction predictions with PBPK models and optimal multiresponse sampling time designs: application to midazolam and a phase I compound. Part 2: clinical trial results. J Pharmacokinet Pharmacodyn 35(6):661–681

    Article  PubMed  CAS  Google Scholar 

  10. Khinkis LA, Krzyzanski W, Jusko WJ, Greco WR (2009) D-optimal designs for parameter estimation for indirect pharmacodynamic response models. J Pharmacokinet Pharmacodyn 36(6):523–539

    Article  PubMed  Google Scholar 

  11. Silber HE, Nyberg J, Hooker AC, Karlsson MO (2009) Optimization of the intravenous glucose tolerance test in T2DM patients using optimal experimental design. J Pharmacokinet Pharmacodyn 36(3):281–295

    Article  PubMed  CAS  Google Scholar 

  12. Plan EL, Maloney A, Trocóniz IF, Karlsson MO (2009) Performance in population models for count data, part I: maximum likelihood approximations. J Pharmacokinet Pharmacodyn 36(4):353–366

    Article  PubMed  Google Scholar 

  13. Ogungbenro K, Aarons L (2010) Sample size/power calculations for population pharmacodynamic experiments involving repeated-count measurements. J Biopharm Stat 20(5):1026–1042

    Article  PubMed  Google Scholar 

  14. Ogungbenro K, Aarons L (2011) Population Fisher information matrix and optimal design of discrete data responses in population pharmacodynamic experiments. J Pharmacokinet Pharmacodyn 38(4):449–469

    Article  PubMed  Google Scholar 

  15. Nyberg J, Karlsson MO, Hooker AC (2009) Population optimal experimental design for discrete type data. PAGE (Population Approach Group Europe) 18, St. Petersburgh, Russia Abstr 1468. www.page-meeting.org/?abstract=1468

  16. Fedorov VV (1972) Theory of optimal experiments. Academic Press, New York

    Google Scholar 

  17. SAS Institute Inc., Cary, NC, USA

  18. Maloney A, Schaddelee M, Freijer J, Krauwinkel W, van Gelderen M, Jacqmin P, Simonsson US (2010) An example of optimal phase II design for exposure response modelling. J Pharmacokinet Pharmacodyn 37(5):475–491

    Article  PubMed  Google Scholar 

  19. Maloney A, Karlsson MO, Simonsson US (2007) Optimal adaptive design in clinical drug development: a simulation example. J Clin Pharmacol 47(10):1231–1243

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank two reviewers for a number of important suggestions which significantly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Maloney.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 42 kb)

Appendix

Appendix

The individual components on the expected FIM matrix for model 1 were determined analytically. The expected FIM matrix for model 1 is:

$$ {\text{expected}}\;{\text{FIM}} = - {\text{E}}\left[ {\begin{array}{*{20}c} {\frac{{\partial^{2} LL}}{{\partial E_{0}^{2} }}} & {\frac{{\partial^{2} LL}}{{\partial E_{0} ED_{50} }}} & {\frac{{\partial^{2} LL}}{{\partial E_{0} E_{{max} } }}} \\ {\frac{{\partial^{2} LL}}{{\partial E_{0} ED_{50} }}} & {\frac{{\partial^{2} LL}}{{\partial ED_{50}^{2} }}} & {\frac{{\partial^{2} LL}}{{\partial ED_{50} E_{{max} } }}} \\ {\frac{{\partial^{2} LL}}{{\partial E_{0} E_{{max} } }}} & {\frac{{\partial^{2} LL}}{{\partial ED_{50} E_{{max} } }}} & {\frac{{\partial^{2} LL}}{{\partial E_{{max} }^{2} }}} \\ \end{array} } \right] $$

where LL is the log-likelihood. For the Poisson model, the log likelihood is:

$$ LL = x \cdot { \log }\left( \lambda \right) - \lambda - { \log }(x!) $$

For x counts, and for model 1:

$$ { \log }\left( \lambda \right) = E_{0} + \frac{{E_{{max} } \cdot Dose}}{{ED_{50} + Dose}} $$

Thus

$$ \frac{\partial LL}{{\partial E_{0} }} = x - \lambda $$
$$ \frac{\partial LL}{{\partial ED_{50} }} = \frac{{E_{max} \cdot Dose}}{{\left( {ED_{50} + Dose} \right)^{2} }}(\lambda - x) $$
$$ \frac{\partial LL}{{\partial E_{{max} } }} = \frac{Dose}{{ED_{50} + Dose}}(x - \lambda ) $$
$$ \frac{{\partial^{2} LL}}{{\partial E_{0}^{2} }} = - \lambda $$
$$ \frac{{\partial^{2} LL}}{{\partial ED_{50}^{2} }} = \frac{{E_{{max} } \cdot Dose}}{{\left( {ED_{50} + Dose} \right)^{3} }}\left( {2x - 2\lambda - \lambda \frac{{E_{{max} } \cdot Dose}}{{ED_{50} + Dose}}} \right) $$
$$ \frac{{\partial^{2} LL}}{{\partial E_{{max} }^{2} }} = - \lambda \left( {\frac{Dose}{{ED_{50} + Dose}}} \right)^{2} $$
$$ \frac{{\partial^{2} LL}}{{\partial E_{0} ED_{50} }} = \lambda \frac{{E_{{max} } \cdot Dose}}{{\left( {ED_{50} + Dose} \right)^{2} }} $$
$$ \frac{{\partial^{2} LL}}{{\partial E_{0} E_{{max} } }} = - \lambda \frac{Dose}{{ED_{50} + Dose}} $$
$$ \frac{{\partial^{2} LL}}{{\partial ED_{50} E_{{max} } }} = \frac{Dose}{{\left( {ED_{50} + Dose} \right)^{2} }}\left( {\lambda - x + \lambda \frac{{E_{{max} } \cdot Dose}}{{ED_{50} + Dose}}} \right) $$

By noting that E(x) = \( \lambda \), the above expressions can be simplified and used to determine the expected FIM. Thus we obtain:

$$ \frac{{\partial^{2} LL}}{{\partial E_{0}^{2} }} = - \lambda $$
$$ \frac{{\partial^{2} LL}}{{\partial ED_{50}^{2} }} = - \frac{{\lambda \left( {E_{{max} } \cdot Dose} \right)^{2} }}{{\left( {ED_{50} + Dose} \right)^{4} }} $$
$$ \frac{{\partial^{2} LL}}{{\partial E_{{max} }^{2} }} = - \lambda \left( {\frac{Dose}{{ED_{50} + Dose}}} \right)^{2} $$
$$ \frac{{\partial^{2} LL}}{{\partial E_{0} ED_{50} }} = \frac{{\lambda \cdot E_{max} \cdot Dose}}{{\left( {ED_{50} + Dose} \right)^{2} }} $$
$$ \frac{{\partial^{2} LL}}{{\partial E_{0} E_{{max} } }} = - \frac{\lambda \cdot Dose}{{ED_{50} + Dose}} $$
$$ \frac{{\partial^{2} LL}}{{\partial ED_{50} E_{{max} } }} = \frac{{\lambda \cdot E_{{max} } \cdot Dose^{2} }}{{\left( {ED_{50} + Dose} \right)^{3} }} $$

So finally the expected FIM can be written as:

$$ {\text{expected}}\;{\text{FIM}}\; = \;\lambda \left[ {\begin{array}{*{20}c} 1 & { - \frac{{E_{{max} } \cdot Dose}}{{\left( {ED_{50} + Dose} \right)^{2} }}} & {\frac{Dose}{{ED_{50} + Dose}}} \\ { - \frac{{E_{{max} } \cdot Dose}}{{\left( {ED_{50} + Dose} \right)^{2} }}} & {\frac{{\left( {E_{{max} } \cdot Dose} \right)^{2} }}{{\left( {ED_{50} + Dose} \right)^{4} }}} & { - \frac{{E_{{max} } \cdot Dose^{2} }}{{\left( {ED_{50} + Dose} \right)^{3} }}} \\ {\frac{Dose}{{ED_{50} + Dose}}} & { - \frac{{E_{{max} } \cdot Dose^{2} }}{{\left( {ED_{50} + Dose} \right)^{3} }}} & {\left( {\frac{Dose}{{ED_{50} + Dose}}} \right)^{2} } \\ \end{array} } \right] $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maloney, A., Simonsson, U.S.H. & Schaddelee, M. D optimal designs for three Poisson dose–response models. J Pharmacokinet Pharmacodyn 40, 201–211 (2013). https://doi.org/10.1007/s10928-013-9300-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-013-9300-x

Keywords

Navigation