Skip to main content
Log in

In vitro to in vivo extrapolation and species response comparisons for drug-induced liver injury (DILI) using DILIsym™: a mechanistic, mathematical model of DILI

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Drug-induced liver injury (DILI) is not only a major concern for all patients requiring drug therapy, but also for the pharmaceutical industry. Many new in vitro assays and pre-clinical animal models are being developed to help screen compounds for the potential to cause DILI. This study demonstrates that mechanistic, mathematical modeling offers a method for interpreting and extrapolating results. The DILIsym™ model (version 1A), a mathematical representation of DILI, was combined with in vitro data for the model hepatotoxicant methapyrilene (MP) to carry out an in vitro to in vivo extrapolation. In addition, simulations comparing DILI responses across species illustrated how modeling can aid in selecting the most appropriate pre-clinical species for safety testing results relevant to humans. The parameter inputs used to predict DILI for MP were restricted to in vitro inputs solely related to ADME (absorption, distribution, metabolism, elimination) processes. MP toxicity was correctly predicted to occur in rats, but was not apparent in the simulations for humans and mice (consistent with literature). When the hepatotoxicity of MP and acetaminophen (APAP) was compared across rats, mice, and humans at an equivalent dose, the species most susceptible to APAP was not susceptible to MP, and vice versa. Furthermore, consideration of variability in simulated population samples (SimPops™) provided confidence in the predictions and allowed examination of the biological parameters most predictive of outcome. Differences in model sensitivity to the parameters were related to species differences, but the severity of DILI for each drug/species combination was also an important factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Graichen ME, Neptun DA, Dent JG, Popp JA, Leonard TB (1985) Effects of methapyrilene on rat hepatic xenobiotic metabolizing enzymes and liver morphology. Fundam Appl Toxicol 5(1):165–174

    Article  PubMed  CAS  Google Scholar 

  2. Hamadeh HK, Knight BL, Haugen AC, Sieber S, Amin RP, Bushel PR, Stoll R, Blanchard K, Jayadev S, Tennant RW, Cunningham ML, Afshari CA, Paules RS (2002) Methapyrilene toxicity: anchorage of pathologic observations to gene expression alterations. Toxicol Pathol 30(4):470–482

    PubMed  CAS  Google Scholar 

  3. Auman JT, Chou J, Gerrish K, Huang Q, Jayadev S, Blanchard K, Paules RS (2007) Identification of genes implicated in methapyrilene-induced hepatotoxicity by comparing differential gene expression in target and nontarget tissue. Environ Health Perspect 115(4):572–578

    Article  PubMed  CAS  Google Scholar 

  4. Craig A, Sidaway J, Holmes E, Orton T, Jackson D, Rowlinson R, Nickson J, Tonge R, Wilson I, Nicholson J (2006) Systems toxicology: integrated genomic, proteomic and metabonomic analysis of methapyrilene induced hepatotoxicity in the rat. J Proteome Res 5(7):1586–1601

    Article  PubMed  CAS  Google Scholar 

  5. Ratra GS, Cottrell S, Powell CJ (1998) Effects of induction and inhibition of cytochromes P450 on the hepatotoxicity of methapyrilene. Toxicol Sci 46(1):185–196

    Article  PubMed  CAS  Google Scholar 

  6. Ratra GS, Powell CJ, Park BK, Maggs JL, Cottrell S (2000) Methapyrilene hepatotoxicity is associated with increased hepatic glutathione, the formation of glucuronide conjugates, and enterohepatic recirculation. Chem Biol Interact 129(3):279–295

    Article  PubMed  CAS  Google Scholar 

  7. Brennan LM, Creasia DA (1982) The effects of methapyrilene hydrochloride on hepatocarcinogenicity and pentobarbital-induced sleeping time in rats and mice. Toxicol Appl Pharmacol 66(2):252–258

    Article  PubMed  CAS  Google Scholar 

  8. Lijinsky W, Knutsen G, Reuber MD (1983) Failure of methapyrilene to induce tumors in hamsters or guinea pigs. J Toxicol Environ Health 12(4–6):653–657

    Article  PubMed  CAS  Google Scholar 

  9. Mirsalis JC (1987) Genotoxicity, toxicity, and carcinogenicity of the antihistamine methapyrilene. Mutat Res 185(3):309–317

    Article  PubMed  CAS  Google Scholar 

  10. Graham EE, Walsh RJ, Hirst CM, Maggs JL, Martin S, Wild MJ, Wilson ID, Harding JR, Kenna JG, Peter RM, Williams DP, Park BK (2008) Identification of the thiophene ring of methapyrilene as a novel bioactivation-dependent hepatic toxicophore. J Pharmacol Exp Ther 326(2):657–671

    Article  PubMed  CAS  Google Scholar 

  11. Shoda L, Kreuwel H, Gadkar K, Zheng Y, Whiting C, Atkinson M, Bluestone J, Mathis D, Young D, Ramanujan S (2010) The type 1 diabetes PhysioLab platform: a validated physiologically based mathematical model of pathogenesis in the non-obese diabetic mouse. Clin Exp Immunol 161(2):250–267

    PubMed  CAS  Google Scholar 

  12. Michelson S, Sehgal A, Friedrich C (2006) In silico prediction of clinical efficacy. Curr Opin Biotechnol 17(6):666–670

    Article  PubMed  CAS  Google Scholar 

  13. Huuskonen J (2003) Prediction of soil sorption coefficient of a diverse set of organic chemicals from molecular structure. J Chem Inf Comput Sci 43(5):1457–1462

    Article  PubMed  CAS  Google Scholar 

  14. Perrin DD (1965) Dissociation constants of organic bases in aqueous solution, 1st edn. Butterworths, London

    Google Scholar 

  15. Leo A, Hansch C, Elkins D (1971) Partition coefficients and their uses. Chem Rev 71(6):525–616

    Article  CAS  Google Scholar 

  16. Artursson P, Karlsson J (1991) Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun 175(3):880–885

    Article  PubMed  CAS  Google Scholar 

  17. Rodgers T, Leahy D, Rowland M (2005) Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci 94(6):1259–1276

    Article  PubMed  CAS  Google Scholar 

  18. Fagerholm U (2007) Prediction of human pharmacokinetics—renal metabolic and excretion clearance. J Pharm Pharmacol 59(11):1463–1471

    Article  PubMed  Google Scholar 

  19. Lee K-T, Tsai S-M, Wang S-N, Lin S-K, Wu S-H, Chuang S-C, Wu S-H, Ma H, Tsai L-Y (2007) Glutathione status in the blood and tissues of patients with virus-originated hepatocellular carcinoma. Clin Biochem 40(15):1157–1162

    Article  PubMed  CAS  Google Scholar 

  20. Nagasaka H, Takayanagi M, Tsukahara H (2009) Children’s toxicology from bench to bed—liver Injury (3): oxidative stress and anti-oxidant systems in liver of patients with Wilson disease. J Toxicol Sci 34(Suppl 2):SP229–SP236

    Article  PubMed  CAS  Google Scholar 

  21. Chen Y-H, Lin F-Y, Liu P-L, Huang Y-T, Chiu J-H, Chang Y-C, Man K-M, Hong C-Y, Ho Y–Y, Lai M-T (2009) Antioxidative and hepatoprotective effects of magnolol on acetaminophen-induced liver damage in rats. Arch Pharm Res 32(2):221–228

    Article  PubMed  CAS  Google Scholar 

  22. Kim HJ, Rozman P, Madhu C, Klaassen CD (1992) Homeostasis of sulfate and 3′-phosphoadenosine 5′-phosphosulfate in rats after acetaminophen administration. J Pharmacol Exp Ther 261(3):1015–1021

    PubMed  CAS  Google Scholar 

  23. Vendemiale G, Grattagliano I, Altomare E, Turturro N, Guerrieri F (1996) Effect of acetaminophen administration on hepatic glutathione compartmentation and mitochondrial energy metabolism in the rat. Biochem Pharmacol 52(8):1147–1154

    Article  PubMed  CAS  Google Scholar 

  24. Rousar T, Kucera O, Kriváková P, Lotková H, Kandár R, Muzáková V, Cervinková Z (2009) Evaluation of oxidative status in acetaminophen treated rat hepatocytes in culture. Physiol Res 58(2):239–246

    PubMed  CAS  Google Scholar 

  25. Katyare SS, Satav JG (1989) Impaired mitochondrial oxidative energy metabolism following paracetamol-induced hepatotoxicity in the rat. Br J Pharmacol 96(1):51–58

    Article  PubMed  CAS  Google Scholar 

  26. Guéguen Y, Grandcolas L, Baudelin C, Grison S, Tissandié E, Jourdain JR, Paquet F, Voisin P, Aigueperse J, Gourmelon P, Souidi M (2007) Effect of acetaminophen administration to rats chronically exposed to depleted uranium. Toxicology 229(1–2):62–72

    Article  PubMed  Google Scholar 

  27. Sugimura Y, Yamamoto K (1998) Effect of orally administered reduced- and oxidized-glutathione against acetaminophen-induced liver injury in rats. J Nutr Sci Vitaminol 44(5):613–624

    Article  PubMed  CAS  Google Scholar 

  28. Wang PY, Kaneko T, Wang Y, Sato A (1999) Acarbose alone or in combination with ethanol potentiates the hepatotoxicity of carbon tetrachloride and acetaminophen in rats. Hepatology 29(1):161–165

    Article  PubMed  Google Scholar 

  29. Waters E, Wang JH, Redmond HP, Wu QD, Kay E, Bouchier-Hayes D (2001) Role of taurine in preventing acetaminophen-induced hepatic injury in the rat. Am J Physiol Gastrointest Liver Physiol 280(6):G1274–G1279

    PubMed  CAS  Google Scholar 

  30. Zieve L, Anderson WR, Dozeman R, Draves K, Lyftogt C (1985) Acetaminophen liver injury: sequential changes in two biochemical indices of regeneration and their relationship to histologic alterations. J Lab Clin Med 105(5):619–624

    PubMed  CAS  Google Scholar 

  31. Chanda S, Mangipudy RS, Warbritton A, Bucci TJ, Mehendale HM (1995) Stimulated hepatic tissue repair underlies heteroprotection by thioacetamide against acetaminophen-induced lethality. Hepatology 21(2):477–486

    PubMed  CAS  Google Scholar 

  32. Papastefanou VP, Bozas E, Mykoniatis MG, Grypioti A, Garyfallidis S, Bartsocas CS, Nicolopoulou-Stamati P (2007) VEGF isoforms and receptors expression throughout acute acetaminophen-induced liver injury and regeneration. Arch Toxicol 81(10):729–741

    Article  PubMed  CAS  Google Scholar 

  33. Hockings PD, Roberts T, Campbell SP, Reid DG, Greenhill RW, Polley SR, Nelson P, Bertram TA, Kramer K (2002) Longitudinal magnetic resonance imaging quantitation of rat liver regeneration after partial hepatectomy. Toxicol Pathol 30(5):606–610

    Article  PubMed  Google Scholar 

  34. Steiner JW, Perz ZM, Taichman LB (1966) Cell population dynamics in the liver. A review of quantitative morphological techniques applied to the study of physiological and pathological growth. Exp Mol Pathol 5(2):146–181

    Article  PubMed  CAS  Google Scholar 

  35. Bucher NL (1967) Experimental aspects of hepatic regeneration. N Engl J Med 277(14):738–746 (conclusion 1987)

    Google Scholar 

  36. Saito C, Yan H-M, Artigues A, Villar MT, Farhood A, Jaeschke H (2010) Mechanism of protection by metallothionein against acetaminophen hepatotoxicity. Toxicol Appl Pharmacol 242(2):182–190

    Article  PubMed  CAS  Google Scholar 

  37. Saito C, Zwingmann C, Jaeschke H (2010) Novel mechanisms of protection against acetaminophen hepatotoxicity in mice by glutathione and N-acetylcysteine. Hepatology 51(1):246–254

    Article  PubMed  CAS  Google Scholar 

  38. McConnachie LA, Mohar I, Hudson FN, Ware CB, Ladiges WC, Fernandez C, Chatterton-Kirchmeier S, White CC, Pierce RH, Kavanagh TJ (2007) Glutamate cysteine ligase modifier subunit deficiency and gender as determinants of acetaminophen-induced hepatotoxicity in mice. Toxicol Sci 99(2):628–636

    Article  PubMed  CAS  Google Scholar 

  39. Soga T, Baran R, Suematsu M, Ueno Y, Ikeda S, Sakurakawa T, Kakazu Y, Ishikawa T, Robert M, Nishioka T, Tomita M (2006) Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. J Biol Chem 281(24):16768–16776

    Article  PubMed  CAS  Google Scholar 

  40. Masubuchi Y, Sugiyama S, Horie T (2009) Th1/Th2 cytokine balance as a determinant of acetaminophen-induced liver injury. Chem Biol Interact 179(2–3):273–279

    Article  PubMed  CAS  Google Scholar 

  41. Vaquero J, Bélanger M, James L, Herrero R, Desjardins P, Côté J, Blei AT, Butterworth RF (2007) Mild hypothermia attenuates liver injury and improves survival in mice with acetaminophen toxicity. Gastroenterology 132(1):372–383

    Article  PubMed  CAS  Google Scholar 

  42. Liu J, Liu Y, Hartley D, Klaassen CD, Shehin-Johnson SE, Lucas A, Cohen SD (1999) Metallothionein-I/II knockout mice are sensitive to acetaminophen-induced hepatotoxicity. J Pharmacol Exp Ther 289(1):580–586

    PubMed  CAS  Google Scholar 

  43. Srinivasan C, Williams WM, Ray MB, Chen TS (2001) Prevention of acetaminophen-induced liver toxicity by 2(R,S)-n-propylthiazolidine-4(R)-carboxylic acid in mice. Biochem Pharmacol 61(2):245–252

    Article  PubMed  CAS  Google Scholar 

  44. Muldrew KL, James LP, Coop L, McCullough SS, Hendrickson HP, Hinson JA, Mayeux PR (2002) Determination of acetaminophen-protein adducts in mouse liver and serum and human serum after hepatotoxic doses of acetaminophen using high-performance liquid chromatography with electrochemical detection. Drug Metab Dispos 30(4):446–451

    Article  PubMed  CAS  Google Scholar 

  45. Whitehouse LW, Wong LT, Paul CJ, Pakuts A, Solomonraj G (1985) Postabsorption antidotal effects of N-acetylcysteine on acetaminophen-induced hepatotoxicity in the mouse. Can J Physiol Pharmacol 63(5):431–437

    Article  PubMed  CAS  Google Scholar 

  46. Hanawa N, Shinohara M, Saberi B, Gaarde WA, Han D, Kaplowitz N (2008) Role of JNK translocation to mitochondria leading to inhibition of mitochondria bioenergetics in acetaminophen-induced liver injury. J Biol Chem 283(20):13565–13577

    Article  PubMed  CAS  Google Scholar 

  47. Aleksunes LM, Slitt AM, Cherrington NJ, Thibodeau MS, Klaassen CD, Manautou JE (2005) Differential expression of mouse hepatic transporter genes in response to acetaminophen and carbon tetrachloride. Toxicol Sci 83(1):44–52

    Article  PubMed  CAS  Google Scholar 

  48. Aleksunes LM, Campion SN, Goedken MJ, Manautou JE (2008) Acquired resistance to acetaminophen hepatotoxicity is associated with induction of multidrug resistance-associated protein 4 (Mrp4) in proliferating hepatocytes. Toxicol Sci 104(2):261–273

    Article  PubMed  CAS  Google Scholar 

  49. Fujimoto K, Kumagai K, Ito K, Arakawa S, Ando Y, Oda S, Yamoto T, Manabe S (2009) Sensitivity of liver injury in heterozygous Sod2 knockout mice treated with troglitazone or acetaminophen. Toxicol Pathol 37(2):193–200

    Article  PubMed  CAS  Google Scholar 

  50. Campion SN, Johnson R, Aleksunes LM, Goedken MJ, van Rooijen N, Scheffer GL, Cherrington NJ, Manautou JE (2008) Hepatic Mrp4 induction following acetaminophen exposure is dependent on Kupffer cell function. Am J Physiol Gastrointest Liver Physiol 295(2):G294–G304

    Article  PubMed  CAS  Google Scholar 

  51. Liu Z-X, Govindarajan S, Kaplowitz N (2004) Innate immune system plays a critical role in determining the progression and severity of acetaminophen hepatotoxicity. Gastroenterology 127(6):1760–1774

    Article  PubMed  CAS  Google Scholar 

  52. Liu Z-X, Han D, Gunawan B, Kaplowitz N (2006) Neutrophil depletion protects against murine acetaminophen hepatotoxicity. Hepatology 43(6):1220–1230

    Article  PubMed  CAS  Google Scholar 

  53. Henderson NC, Pollock KJ, Frew J, Mackinnon AC, Flavell RA, Davis RJ, Sethi T, Simpson KJ (2007) Critical role of c-jun (NH2) terminal kinase in paracetamol- induced acute liver failure. Gut 56(7):982–990

    Article  PubMed  CAS  Google Scholar 

  54. Maddox JF, Amuzie CJ, Li M, Newport SW, Sparkenbaugh E, Cuff CF, Pestka JJ, Cantor GH, Roth RA, Ganey PE (2010) Bacterial- and viral-induced inflammation increases sensitivity to acetaminophen hepatotoxicity. J Toxicol Environ Health Part A 73(1):58–73

    Article  PubMed  CAS  Google Scholar 

  55. Bourdi M, Masubuchi Y, Reilly TP, Amouzadeh HR, Martin JL, George JW, Shah AG, Pohl LR (2002) Protection against acetaminophen-induced liver injury and lethality by interleukin 10: role of inducible nitric oxide synthase. Hepatology 35(2):289–298

    Article  PubMed  CAS  Google Scholar 

  56. Dambach DM, Durham SK, Laskin JD, Laskin DL (2006) Distinct roles of NF-kappaB p50 in the regulation of acetaminophen-induced inflammatory mediator production and hepatotoxicity. Toxicol Appl Pharmacol 211(2):157–165

    Article  PubMed  CAS  Google Scholar 

  57. Shinohara M, Ybanez MD, Win S, Than TA, Jain S, Gaarde WA, Han D, Kaplowitz N (2010) Silencing glycogen synthase kinase-3beta inhibits acetaminophen hepatotoxicity and attenuates JNK activation and loss of glutamate cysteine ligase and myeloid cell leukemia sequence 1. J Biol Chem 285(11):8244–8255

    Article  PubMed  CAS  Google Scholar 

  58. Nakagawa H, Maeda S, Hikiba Y, Ohmae T, Shibata W, Yanai A, Sakamoto K, Ogura K, Noguchi T, Karin M, Ichijo H, Omata M (2008) Deletion of apoptosis signal-regulating kinase 1 attenuates acetaminophen-induced liver injury by inhibiting c-Jun N-terminal kinase activation. Gastroenterology 135(4):1311–1321

    Article  PubMed  CAS  Google Scholar 

  59. Gunawan BK, Liu Z-X, Han D, Hanawa N, Gaarde WA, Kaplowitz N (2006) c-Jun N-terminal kinase plays a major role in murine acetaminophen hepatotoxicity. Gastroenterology 131(1):165–178

    Article  PubMed  CAS  Google Scholar 

  60. DeAngelis RA, Markiewski MM, Taub R, Lambris JD (2005) A high-fat diet impairs liver regeneration in C57BL/6 mice through overexpression of the NF-kappaB inhibitor IkappaB alpha. Hepatology 42(5):1148–1157

    Article  PubMed  CAS  Google Scholar 

  61. Allen JW, Shanker G, Aschner M (2001) Methylmercury inhibits the in vitro uptake of the glutathione precursor, cystine, in astrocytes, but not in neurons. Brain Res 894(1):131–140

    Article  PubMed  CAS  Google Scholar 

  62. Manov I, Hirsh M, Iancu TC (2002) Acetaminophen hepatotoxicity and mechanisms of its protection by N-acetylcysteine: a study of Hep3B cells. Exp Toxicol Pathol 53(6):489–500

    Article  PubMed  CAS  Google Scholar 

  63. Shon Y-H, Nam K-S (2002) Protective effect of moutan cortex extract on acetaminophen-induced cytotoxicity in human Chang liver cells. Biol Pharm Bull 25(11):1427–1431

    Article  PubMed  CAS  Google Scholar 

  64. Portmann B, Talbot IC, Day DW, Davidson AR, Murray-Lyon IM, Williams R (1975) Histopathological changes in the liver following a paracetamol overdose: correlation with clinical and biochemical parameters. J Pathol 117(3):169–181

    Article  PubMed  CAS  Google Scholar 

  65. James LP, McCullough SS, Lamps LW, Hinson JA (2003) Effect of N-acetylcysteine on acetaminophen toxicity in mice: relationship to reactive nitrogen and cytokine formation. Toxicol Sci 75(2):458–467

    Article  PubMed  CAS  Google Scholar 

  66. Kelly DW, Holder CL, Korfmacher WA, Getek TA, Lay JO, Casciano DA, Shaddock JG, Duhart HM, Slikker W (1992) Metabolism of methapyrilene by Fischer-344 rat and B6C3F1 mouse hepatocytes. Xenobiotica 22(12):1367–1381

    Article  PubMed  CAS  Google Scholar 

  67. D’Souza RW, Andersen ME (1988) Physiologically based pharmacokinetic model for vinylidene chloride. Toxicol Appl Pharmacol 95(2):230–240

    Article  PubMed  Google Scholar 

  68. D’Souza RW, Francis WR, Andersen ME (1988) Physiological model for tissue glutathione depletion and increased resynthesis after ethylene dichloride exposure. J Pharmacol Exp Ther 245(2):563–568

    PubMed  Google Scholar 

  69. Rodgers T, Rowland M (2006) Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci 95(6):1238–1257

    Article  PubMed  CAS  Google Scholar 

  70. U.S. Food and Drug Administration (2011) Advancing regulatory science at FDA

  71. Toxicity testing in the 21st century: a vision and a strategy. https://download.nap.edu/openbook.php?record_id=11970&page=2. Accessed 12 Jan 2012

  72. Poulin P, Theil F-P (2002) Prediction of pharmacokinetics prior to in vivo studies. 1. Mechanism-based prediction of volume of distribution. J Pharm Sci 91(1):129–156

    Article  PubMed  CAS  Google Scholar 

  73. Poulin P, Theil F-P (2002) Prediction of pharmacokinetics prior to in vivo studies. II. Generic physiologically based pharmacokinetic models of drug disposition. J Pharm Sci 91(5):1358–1370

    Article  PubMed  CAS  Google Scholar 

  74. Poulin P, Kenny JR, Hop CECA, Haddad S (2012) In vitro-in vivo extrapolation of clearance: modeling hepatic metabolic clearance of highly bound drugs and comparative assessment with existing calculation methods. J Pharm Sci 101(2):838–851

    Article  PubMed  CAS  Google Scholar 

  75. Ohtani H, Barter Z, Minematsu T, Makuuchi M, Sawada Y, Rostami-Hodjegan A (2011) Bottom-up modeling and simulation of tacrolimus clearance: prospective investigation of blood cell distribution, sex and CYP3A5 expression as covariates and assessment of study power. Biopharm Drug Dispos 32(9):498–506

    Article  PubMed  CAS  Google Scholar 

  76. Pelkonen O, Turpeinen M, Raunio H (2011) In vivo-in vitro-in silico pharmacokinetic modelling in drug development: current status and future directions. Clin Pharmacokinet 50(8):483–491

    Article  PubMed  CAS  Google Scholar 

  77. Lavé T, Coassolo P, Reigner B (1999) Prediction of hepatic metabolic clearance based on interspecies allometric scaling techniques and in vitro-in vivo correlations. Clin Pharmacokinet 36(3):211–231

    Article  PubMed  Google Scholar 

  78. Lavé T, Parrott N, Grimm HP, Fleury A, Reddy M (2007) Challenges and opportunities with modelling and simulation in drug discovery and drug development. Xenobiotica 37(10–11):1295–1310

    Article  PubMed  Google Scholar 

  79. Parrott N, Lave T (2008) Applications of physiologically based absorption models in drug discovery and development. Mol Pharm 5(5):760–775

    Article  PubMed  CAS  Google Scholar 

  80. Thomas S (2008) Clinical relevance of predictive physiologically based pharmacokinetic methods. Expert Opin Drug Discov 3(7):725–732

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the members of the DILI-sim initiative for their support of this research. For more information on the DILI-sim initiative, see www.thehamner.org/DILI-sim.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett A. Howell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 6884 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howell, B.A., Yang, Y., Kumar, R. et al. In vitro to in vivo extrapolation and species response comparisons for drug-induced liver injury (DILI) using DILIsym™: a mechanistic, mathematical model of DILI. J Pharmacokinet Pharmacodyn 39, 527–541 (2012). https://doi.org/10.1007/s10928-012-9266-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-012-9266-0

Keywords

Navigation