Skip to main content

Advertisement

Log in

Extending the latent variable model for extra correlated longitudinal dichotomous responses

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Since generalized nonlinear mixed-effects modeling methodology of ordered categorical data became available in the pharmacokinetic/pharmacodynamic (PK/PD) literature over a decade ago, pharmacometricians have been increasingly performing exposure–response analyses of such data to inform drug development. Also, as experiences with and scrutiny of these data have increased, pharmacometricians have noted fewer transitions (or greater correlations) between response values than predicted by the model. In this paper, we build on the latent variable (LV) approach, which is convenient for incorporating pharmacological concepts such as pharmacodynamic onset of drug effect, and present a PK/PD methodology which we term the multivariate latent variable (MLV) approach. This approach uses correlations between the latent residuals (LR) to address extra correlation or a fewer number of transitions, relative to if the LR were independent. Four approximation methods for handling dichotomous MLV data are formulated and then evaluated for accuracy and computation time using simulation studies. Some analytical results for models linear in the subject-specific random effects are also presented, and these provide insight into modeling such repeated measures data. Also, a case study previously analyzed using the LV approach is revisited using one of the MLV approximation methods and the results are discussed. Overall, consideration of the simulation and analytical results lead us to some conclusions we feel are applicable to many of the models and situations frequently encountered in analysis of such data: the MLV approach is a flexible method that can handle many different extra correlated data structures and therefore can more accurately predict the number of transitions between response values; incorrect modeling of the population covariances by implementing an LV model when extra correlation exists is not likely to (and in many cases does not) influence accuracy of the population (marginal) mean predictions; adequate prediction of the population mean probabilities achieves adequate predictions of the population variances, regardless of the correct specification of the population covariances—that is, if the LV model accurately predicts the means in the presence of extra correlation, it will accurately predict the variances; the between subject random effects component to the model describe the marginal covariances in responses—not the marginal variances as with continuous-type data. From these conclusions we make a general statement that it may not be necessary to model the extra correlation in every case using the MLV model, which requires technical implementation with currently available commercially or publically available software. The LV model may be sufficient for answering many of the typical questions arising during drug development. The MLV approach should be considered however if prediction or simulation of individual level data is an objective of the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. This implies that parameterizations with time-changing random effects, such as including an η × time term in the model, not only change the correlation structure, but will exert influence on population mean time profile in much more pronounced fashion than with continuous data.

References

  1. Sheiner LB (1994) A new approach to the analysis of analgesic drug trials, illustrated with bromfenac data. Clin Pharmacol Ther 56:309–322

    Article  PubMed  CAS  Google Scholar 

  2. Sheiner LB, Beal SL, Dunne A (1997) Analysis of nonrandomly censored ordered categorical longitudinal data from analgesic trials. J Am Stat Assoc 92:1235–1244

    Article  Google Scholar 

  3. Hutmacher MM, Krishnaswami S, Kowalski KG (2008) Exposure-response modeling using latent variables for the efficacy of a JAK3 inhibitor administered to rheumatoid arthritis patients. J Pharmacokinet Pharmacodyn 35:139–157

    Article  PubMed  CAS  Google Scholar 

  4. Hu C, Xu Z, Rahman MU, Davis HM, Zhou H (2010) A latent variable approach for modeling categorical endpoints among patients with rheumatoid arthritis treated with golimumab plus methotrexate. J Pharmacokin Pharmacodyn 37:309–321

    Article  CAS  Google Scholar 

  5. Lacroix BD, Lovern MR, Stockis A, Sargentini-Maier ML, Karlsson MO, Friberg LE (2009) A pharmacodynamic Markov mixed-effects model for determining the effect of exposure to certolizumab pegol on the ACR20. Clin Pharmacol Ther 86:387–395

    Article  PubMed  CAS  Google Scholar 

  6. Felson DT, Anderson JJ, Boers M, Bombardier C, Furst D, Goldsmith C, Katz LM, Lightfoot R Jr, Paulus H, Strand V, Tugwell P, Weinblatt M, Williams HJ, Wolfe F, Kieszak S (1995) ACR preliminary definition of improvement in rheumatoid arthritis. Arthritis Rheum 38:727–735

    Article  PubMed  CAS  Google Scholar 

  7. Karlsson MO, Schoemaker RC, Kemp B, Cohen AF, van Gerven JM, Tuk B, Peck CC, Danhof M (2000) A pharmacodynamic Markov mixed-effects model for the effect of temazepam on sleep. Clin Pharmacol Ther 68:175–188

    Article  PubMed  CAS  Google Scholar 

  8. Xu H, Craig BA (2009) A probit latent class model with general correlation structures for evaluating accuracy of diagnostics tests. Biometrics 65:1145–1155

    Article  PubMed  Google Scholar 

  9. Beal SL (2001) Ways to fit a PK model with some data below the quantification limit. J Pharmacokin Pharmacodyn 28:481–504

    Article  CAS  Google Scholar 

  10. Ahn JE, Karlsson MO, Dunne A, Ludden TM (2008) Likelihood based approaches to handling data below the quantification limit using NONMEM VI. J Pharmacokinet Pharmacodyn 35:401–421

    Article  PubMed  Google Scholar 

  11. Mendell NR, Elston RC (1974) Multifactorial qualitative traits: genetic analysis and prediction of recurrence risks. Biometrics 30:41–57

    Article  PubMed  CAS  Google Scholar 

  12. Rice J, Reich T, Cloninger CR, Wette R (1979) An approximation to the multivariate normal integral: its application to multifactorial qualitative traits. Biometrics 35:451–459

    Article  Google Scholar 

  13. Smith C, Mendell NR (1974) Recurrence risks from family history and metric traits. Ann Hum Genet 37:275–286

    Article  PubMed  CAS  Google Scholar 

  14. Cappellari L, Jenkins SP (2003) Multivariate probit regression using simulated maximum likelihood. Stata J 3:278–294

    Google Scholar 

  15. Joe H (1995) Approximations to multivariate normal rectangle probabilities based on conditional expectations. J Am Stat Assoc 90:957–964

    Article  Google Scholar 

  16. SAS Institute Inc (2002) SAS software: usage and reference, version 9. SAS Institute Inc, Cary

    Google Scholar 

  17. MathSoft Inc (2005) S-Plus for Windows. Data Analysis Division, MathSoft Inc, Seattle

    Google Scholar 

  18. Beal SL, Sheiner LB, Boeckmann AJ (eds) (1989–2006) NONMEM users guides. Icon Development Solutions, Ellicott City

  19. Drezner Z, Wesolowsky GO (1990) On the computation of the bivariate normal integral. J Stat Comput Simul 35:101–107

    Article  Google Scholar 

  20. Kuhn E, Lavielle M (2005) Maximum likelihood estimation in nonlinear mixed effects models. Comput Stat Data Anal 49:1020–1038

    Article  Google Scholar 

  21. Bock RD, Gibbons RD (1996) High-dimensional multivariate probit analysis. Biometrics 52:1183–1194

    Article  PubMed  CAS  Google Scholar 

  22. Kremer M, Bloom BJ, Breedveld FC, Coombs J, Fletcher MP, Gruben D, Krishnaswami S, Burgos-Vargas R, Wilkinson B, Zerbini CAF, Zwillich SH (2006) The safety and efficacy of a JAK inhibitor in patients with active rheumatoid arthritis: results of a double-blind, placebo-controlled phase IIa trial of three dosage levels of CP-690, 550 versus placebo. Arthritis Rheum 60:1895–1905

    Article  Google Scholar 

  23. Ochi Y, Prentice RL (1984) Likelihood inference in a correlated probit regression model. Biometrika 71:531–543

    Article  Google Scholar 

  24. Liang KY, Zeger SL (1986) Longitudinal data analysis using generalized linear models. Biometrika 73:13–22

    Article  Google Scholar 

  25. Jacqmin-Gadda H, Proust-Lima C, Amiéva H (2010) Semi-parametric latent process model for longitudinal ordinal data: application to cognitive decline. Stat Med 29:2723–2731

    Article  PubMed  Google Scholar 

  26. Genz A (1992) Numerical computation of multivariate normal probabilities. J Comput Graph Stat 1:141–149

    Article  Google Scholar 

  27. Yano I, Beal SL, Sheiner LB (2001) The need for mixed-effects modeling with population dichotomous data. J Pharmacokinet Pharmacodyn 28:389–412

    PubMed  CAS  Google Scholar 

  28. Philipson PM, Ho WK, Henderson R (2008) Comparative review of methods for handling drop-out in longitudinal studies. Stat Med 27:6276–6298

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew M. Hutmacher.

Appendices

Appendices

Appendix 1: Stochastic integral approximation

$$ \Upsigma = \left[ {\begin{array}{llll} 1 & {\rho_{12} } & \cdots & {\rho_{1n} } \\ {\rho_{12} } & 1 & {} & {\rho_{2n} } \\ \vdots & {} & \ddots & \vdots \\ {\rho_{1n} } & {\rho_{2n} } & \cdots & 1 \\ \end{array} } \right] = S^{T} S = \left[ {\begin{array}{llll} {s_{11} } & 0 & \cdots & 0 \\ {s_{12} } & {s_{22} } & {} & 0 \\ \vdots & {} & \ddots & \vdots \\ {s_{1n} } & {s_{2n} } & \cdots & {s_{nn} } \\ \end{array} } \right]S $$
$$ s_{11} = 1;\,s_{ll} = \sqrt {1 - \sum\limits_{k = 1}^{l - 1} {s_{kl}^{2} } } ;\,s_{lm} = \left( {\rho_{lm} - \sum\limits_{k = 1}^{l - 1} {s_{kl} s_{km} } } \right)s_{ll}^{ - 1} $$
$$ \begin{aligned} P\left( {Y_{l} = y_{l} \left| {Y_{1} = y_{1} } \right., \ldots ,Y_{l - 1} = y_{l - 1} } \right) & = P\left( {\varepsilon_{l} \bar{ \le }q_{l} \left| {\varepsilon_{1} \bar{ \le }q_{1} } \right., \ldots ,\varepsilon_{l - 1} \bar{ \le }q_{l - 1} } \right) \\ & \approx Q_{{l\left| {1, \ldots ,l - 1} \right.}} = \left( { - 1} \right)^{{\left( {1 - y_{l} } \right)}} \times \tfrac{1}{M}\sum\limits_{j = 1}^{M} \Upphi \left( {\left( {q_{l} - \sum\limits_{k = 1}^{l - 1} {s_{kl} e_{kj}^{ * } } } \right)s_{ll}^{ - 1} } \right) \\ \end{aligned} $$

where \( e_{kj}^{ * } = \Upphi^{ - 1} \left( {1 - y_{k} + \left( { - 1} \right)^{{\left( {1 - y_{k} } \right)}} u_{kj}^{ * } \Upphi \left( {\left( { - 1} \right)^{{\left( {1 - y_{k} } \right)}} \left( {q_{k} - \sum\limits_{g = 1}^{k - 1} {s_{g,k} e_{gj}^{ * } } } \right)s_{k,k}^{ - 1} } \right)} \right) \) and \( u_{kj}^{ * } \) is a random draw from U(0,1).

Appendix 2: Gaussian quadrature

Borrowing some of the quantities from Appendix 1,

$$ \begin{aligned} P\left( {Y_{l} = y_{l} \left| {Y_{1} = y_{1} } \right., \ldots ,Y_{l - 1} = y_{l - 1} } \right) = P\left( {\varepsilon_{l} \bar{ \le }q_{l} \left| {\varepsilon_{1} \bar{ \le }q_{1} } \right., \ldots ,\varepsilon_{l - 1} \bar{ \le }q_{l - 1} } \right) \\ \approx Q_{{l\left| {1, \ldots ,l - 1} \right.}} = \left( { - 1} \right)^{{\left( {1 - y_{l} } \right)}} \times \Upphi \left( {\left( {q_{l} - \sum\limits_{k = 1}^{l - 1} {s_{kl} e_{kl}^{IOV} } } \right)s_{ll}^{ - 1} } \right) \\ \end{aligned} $$

where \( e_{kl}^{IOV} = \Upphi^{ - 1} \left( {1 - y_{k} + \left( { - \Upphi \left( {\eta_{kl}^{IOV} } \right)} \right)^{{\left( {1 - y_{k} } \right)}} \Upphi \left( {\left( { - 1} \right)^{{\left( {1 - y_{k} } \right)}} \left( {q_{k} - \sum\limits_{g = 1}^{k - 1} {s_{g,k} e_{gl}^{IOV} } } \right)s_{k,k}^{ - 1} } \right)} \right) \) and η IOV kl is a N(0,1) random effect. Note that in this case the e’s and the η’s have two subscript variables to imply that a different sequence of random effects was used for each conditional probability.

Appendix 3: Binary variable method

From Drezner and Wesolowsky

$$ \begin{aligned} K\left( {q_{1} ,q_{2} ;\rho_{12} } \right)&=& \rho_{12} \left[ {5\phi_{2} \left( {q_{1} ,q_{2};\left( {1 - \sqrt {{3 \mathord{\left/ {\vphantom {3 5}} \right.\kern-\nulldelimiterspace} 5}} } \right){{\rho_{12} }\mathord{\left/ {\vphantom {{\rho_{12} } 2}} \right.\kern-\nulldelimiterspace} 2}} \right) + 8\phi_{2} \left( {q_{1},q_{2} ;{{\rho_{12} } \mathord{\left/ {\vphantom {{\rho_{12} } 2}}\right. \kern-\nulldelimiterspace} 2}} \right)} \right. + {{\left.{5\phi_{2} \left( {q_{1} ,q_{2} ;\left( {1 + \sqrt {{3\mathord{\left/ {\vphantom {3 5}} \right.\kern-\nulldelimiterspace} 5}} } \right){{\rho_{12} }\mathord{\left/ {\vphantom {{\rho_{12} } 2}} \right.\kern-\nulldelimiterspace} 2}} \right)} \right]} \mathord{\left/{\vphantom {{\left. {5\phi_{2} \left( {q_{1} ,q_{2} ;\left( {1 +\sqrt {{3 \mathord{\left/ {\vphantom {3 5}} \right.\kern-\nulldelimiterspace} 5}} } \right){{\rho_{12} }\mathord{\left/ {\vphantom {{\rho_{12} } 2}} \right.\kern-\nulldelimiterspace} 2}} \right)} \right]} {18}}} \right.\kern-\nulldelimiterspace} {18}} + \Upphi \left( { - q_{1} }\right)\Upphi \left( { - q_{2} } \right) + \Upphi \left( {q_{1} }\right) + \Upphi \left( {q_{2} } \right) - 1 \\ \end{aligned} $$

K(q i1q i2; ρ12) ≈ Φ(q i1q i2; ρ12) and ρ12 is the correlation between ε 1 and ε 2.

$$ H_{lm} = \left( { - 1} \right)^{{y_{l} }} \left( { - 1} \right)^{{y_{m} }} K\left( {q_{l} ,q_{m} ,\rho_{lm} } \right) + y_{m} \left( { - 1} \right)^{{1 - y_{l} }} \Upphi \left( {q_{l} } \right) + y_{l} \left( { - 1} \right)^{{1 - y_{ml} }} \Upphi \left( {q_{m} } \right) + \frac{{y_{l} + y_{m} }}{{\left( { - 2} \right)^{{y_{l} y_{m} }} }} $$

where K(·) is defined above. Let \( M_{l} = \Upphi \left({\left({- 1} \right)^{{1 - y_{l}}} q_{l}} \right) \) and \( C_{ll} = M_{l} - M_{l}^{2} \) and \( C_{lm} = H_{lm} - M_{l} M_{m} \), then

$$ \begin{aligned} P\left( {Y_{l} = y_{l} \left| {Y_{1} = y_{1} } \right., \ldots ,Y_{l - 1} = y_{l - 1} } \right) = P\left( {\varepsilon_{l} \bar{ \le }q_{l} \left| {\varepsilon_{1} \bar{ \le }q_{1} } \right., \ldots ,\varepsilon_{l - 1} \bar{ \le }q_{l - 1} } \right) \\ \approx Q_{{l\left| {1, \ldots ,l - 1} \right.}} = M_{l} + \left[ {C_{1l} , \ldots ,C_{l - 1,l} } \right]\left[ {\begin{array}{llll} {C_{11} } & \cdots & {C_{1,l - 1} } \\ \vdots & \ddots & \vdots \\ {C_{1,l - 1} } & \cdots & {C_{l - 1,l - 1} } \\ \end{array} } \right]^{ - 1} \left[ {\begin{array}{ll} {1 - M_{1} } \hfill \\ {\quad \vdots } \hfill \\ {1 - M_{l - 1} } \hfill \\ \end{array} } \right] \\ \end{aligned} $$

Based on preliminary evaluation (not shown) the 3 point approximation of K which can be programmed with 1 line of code has acceptable accuracy compared to the 5 or 10 point approximation.

Appendix 4: Mendell–Elston

This approximation is defined recursively. We slightly modify the notation of Rice et al. for clarity and construct a general likelihood.

$$ \begin{aligned} P\left( {Y_{l} = y_{l} \left| {Y_{1} = y_{1} } \right., \ldots ,Y_{l - 1} = y_{l - 1} } \right) = P\left( {\varepsilon_{l} \bar{ \le }q_{l} \left| {\varepsilon_{1} \bar{ \le }q_{1} } \right., \ldots ,\varepsilon_{l - 1} \bar{ \le }q_{l - 1} } \right) \\ \approx Q_{{l\left| {1, \ldots ,l - 1} \right.}} = \Upphi \left( {\left( { - 1} \right)^{{\left( {1 - y_{l} } \right)}} Z_{{l\left| {0,1, \ldots ,l - 1} \right.}} } \right) \\ \end{aligned} $$

where \( Z_{{l\left| {0,1, \ldots ,j} \right.}} = \left( {Z_{{l\left| {0,1, \ldots ,j - 1} \right.}} - a_{{j\left| {0,1, \ldots ,j - 1} \right.}} r_{{jl\left| {0,1, \ldots ,j - 1} \right.}} } \right)\sigma_{{l\left| {0,1, \ldots ,j} \right.}}^{ - 1} \), \( a_{{j\left| {0,1, \ldots ,j - 1} \right.}} = {{\left( { - 1} \right)^{{y_{j} }} \phi \left( {Z_{{j\left| {0,1, \ldots ,j - 1} \right.}} } \right)} \mathord{\left/ {\vphantom {{\left( { - 1} \right)^{{y_{j} }} \phi \left( {Z_{{j\left| {0,1, \ldots ,j - 1} \right.}} } \right)} {\Upphi \left( {( - 1)^{{\left( {1 - y_{j} } \right)}} Z_{{j\left| {0,1, \ldots ,j - 1} \right.}} } \right)}}} \right. \kern-\nulldelimiterspace} {\Upphi \left( {( - 1)^{{\left( {1 - y_{j} } \right)}} Z_{{j\left| {0,1, \ldots ,j - 1} \right.}} } \right)}} \), \( \sigma_{{k\left| {0,1, \ldots ,i} \right.}} = \sqrt {1 - r_{{ik\left| {0,1, \ldots ,i} \right. - 1}}^{2} a_{{i\left| {0,1, \ldots ,i} \right. - 1}} \left( {a_{{i\left| {0,1, \ldots ,i} \right. - 1}} - Z_{{i\left| {0,1, \ldots ,i} \right. - 1}} } \right)} \), and \( r_{{mn\left| {0,1, \ldots ,j} \right.}} = \left( {r_{{mn\left| {0,1, \ldots ,j - 1} \right.}} - r_{{jm\left| {0,1, \ldots ,j - 1} \right.}} r_{{jn\left| {0,1, \ldots ,j - 1} \right.}} a_{{j\left| {0,1, \ldots ,j} \right. - 1}} \left( {a_{{j\left| {0,1, \ldots ,j - 1} \right.}} - Z_{{j\left| {0,1, \ldots ,j - 1} \right.}} } \right)} \right)\sigma_{{m\left| {0,1, \ldots ,j} \right.}}^{ - 1} \sigma_{{n\left| {0,1, \ldots ,j} \right.}}^{ - 1} \).

Note that \( Z_{l\left| 0 \right.} = q_{l} \), \( r_{lm\left| 0 \right.} = \rho_{lm} \).

Appendix 5: Calculation of a marginal covariance

$$ \begin{aligned} COV\left( {Y_{i} ,Y_{j} } \right) = E\left( {Y_{i} Y_{j} } \right) - E\left( {Y_{i} } \right)E\left( {Y_{i} } \right) = E_{\eta } \left( {E\left( {Y_{i} Y_{j} \left| \eta \right.} \right)} \right) - E_{\eta } \left( {E\left( {Y_{i} \left| \eta \right.} \right)} \right)E_{\eta } \left( {E\left( {Y_{j} \left| \eta \right.} \right)} \right) \\ = E_{\eta } \left( {\Upphi_{2} \left( {q_{i} ,q_{j} ,\rho \left| \eta \right.} \right)} \right) - E_{\eta } \left( {\Upphi \left( {q_{i} \left| \eta \right.} \right)} \right)E_{\eta } \left( {\Upphi \left( {q_{j} \left| \eta \right.} \right)} \right) \\ \approx \tfrac{1}{M}\sum\limits_{k = 1}^{M} {\Upphi_{2} \left( {q_{i} ,q_{j} ,\rho \left| {\eta_{k}^{(s)} } \right.} \right)} - \left[ {\tfrac{1}{M}\sum\limits_{k = 1}^{M} {\Upphi \left( {q_{i} \left| {\eta_{k}^{(s)} } \right.} \right)} } \right]\left[ {\tfrac{1}{M}\sum\limits_{k = 1}^{M} {\Upphi \left( {q_{j} \left| {\eta_{k}^{(s)} } \right.} \right)} } \right] \\ \end{aligned} $$

The PROBBNRM function in SAS was used to compute \( \Upphi_{2} \left( {q_{i} ,q_{j} ,\rho \left| {\eta_{k}^{(s)} } \right.} \right) \) and η (s) k was sampled from a N(0, \( \hat{\Upomega } \)) distribution

Computation of the marginal variance

$$ V\left( {Y_{i} } \right) = E\left( {Y_{i}^{2} } \right) - E\left( {Y_{i}^{{}} } \right)^{2} = \tfrac{1}{M}\sum\limits_{k = 1}^{M} {\Upphi \left( {q_{i} \left| {\eta_{k}^{(s)} } \right.} \right)\left[ {1 - \tfrac{1}{M}\sum\limits_{k = 1}^{M} {\Upphi \left( {q_{i} \left| {\eta_{k}^{(s)} } \right.} \right)} } \right]} $$

where \( E\left( {Y_{i}^{2} } \right) = E\left( {Y_{i} } \right) \) and \( E\left( {Y_{i} } \right) = P\left( {Y_{i} } \right). \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutmacher, M.M., French, J.L. Extending the latent variable model for extra correlated longitudinal dichotomous responses. J Pharmacokinet Pharmacodyn 38, 833–859 (2011). https://doi.org/10.1007/s10928-011-9222-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-011-9222-4

Keywords

Navigation