Skip to main content

Advertisement

Log in

Gaining insights into the consequences of target-mediated drug disposition of monoclonal antibodies using quasi-steady-state approximations

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Target-mediated drug disposition (TMDD) is frequently reported for therapeutic monoclonal antibodies and is linked to the high affinity and high specificity of antibody molecules for their target. Understanding TMDD of a monoclonal antibody should go beyond the empirical description of its non-linear PK since valuable insights on the antibody-target interaction itself can be gained. This makes its mechanistic understanding precious for the drug development process, in particular for the optimization of new antibody molecules, for the design and interpretation of pharmacokinetic studies, and possibly even for the evaluation of efficacy and dose selection of drug candidates. Using the observation that the molecular (microscopic) processes are usually much more rapid than the pharmacokinetic (macroscopic) processes, a series of quasi-steady-state conditions on the microscopic level is proposed to bridge the gap between simple empirical and complex mechanistic descriptions of TMDD. These considerations show the impact of parameters such as target turnover, target expression, and target accessibility on the pharmacokinetics and pharmacodynamics of monoclonal antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mould D, Sweeney K (2007) The pharmacokinetics and pharmacodynamics of monoclonal antibodies mechanistic modeling applied to drug development. Curr Opin Drug Discov Devel 10(1):84–96

    CAS  PubMed  Google Scholar 

  2. Mager DE, Jusko WJ (2001) General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn 28(6):507–532

    Article  CAS  PubMed  Google Scholar 

  3. Meno-Tetang GML, Lowe PJ (2005) On the prediction of the human response: a recycled mechanistic pharmacokinetic/pharmacodynamic approach. Basic Clin Pharmacol Toxicol 96(3):182–192

    Article  CAS  PubMed  Google Scholar 

  4. Ng CM et al (2005) Pharmacokinetic-pharmacodynamic-efficacy analysis of efalizumab in patients with moderate to severe psoriasis. Pharm Res 22(7):1088–1100

    Article  CAS  PubMed  Google Scholar 

  5. Ng CM et al (2006) Pharmacokinetics/pharmacodynamics of nondepleting anti-CD4 monoclonal antibody (TRX1) in healthy human volunteers. Pharm Res 23(1):95–103

    Article  CAS  PubMed  Google Scholar 

  6. Kovarik JM et al (2001) A population pharmacokinetic screen to identify demographic-clinical covariates of basiliximab in liver transplantation. Clin Pharmacol Ther 69(4):201–209

    Article  CAS  PubMed  Google Scholar 

  7. Lu J-F et al (2008) Clinical pharmacokinetics of bevacizumab in patients with solid tumors. Cancer Chemother Pharmacol 62(5):779–786

    Article  CAS  PubMed  Google Scholar 

  8. Mould DR et al (2007) Population pharmacokinetics-pharmacodynamics of alemtuzumab (Campath®) in patients with chronic lymphocytic leukaemia and its link to treatment response. Br J Clin Pharmacol 64(3):278–291. doi:10.1111/j.1365-2125.2007.02914.x

    Article  CAS  PubMed  Google Scholar 

  9. Ng CM et al (2005) Population pharmacokinetics of rituximab (anti-CD20 monoclonal antibody) in rheumatoid arthritis patients during a phase II clinical trial. J Clin Pharmacol 45(7):792–801. doi:10.1177/0091270005277075

    Article  CAS  PubMed  Google Scholar 

  10. Ternant D et al (2008) Infliximab pharmacokinetics in inflammatory bowel disease patients. Ther Drug Monit 30(4):523–529

    CAS  PubMed  Google Scholar 

  11. Xu Z et al (2008) Population pharmacokinetics of infliximab in patients with ankylosing spondylitis. J Clin Pharmacol 48(6):681–695. doi:10.1177/0091270008316886

    Article  CAS  PubMed  Google Scholar 

  12. Nolting A, Fox FE, Kovar A (2006) Clinical drug development of cetuximab, a monoclonal antibody. In: Meibohm B (ed) Pharmacokinetics and pharmacodynamics of biotech drugs: principles and case studies in drug development. WILEY–VCH, Weinheim, pp 353–370

  13. FDA (2006) Clinical pharmacology biopharmaceutics review(s): vectibix panitumumab injectable. FDA, Center for Drug Evaluation and Research, Rockville

    Google Scholar 

  14. Mager DE (2006) Target-mediated drug disposition and dynamics. Biochem Pharmacol 72(1):1–10

    Article  CAS  PubMed  Google Scholar 

  15. Mager D, Krzyzanski W (2005) Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition. Pharm Res 22(10):1589–1596

    Article  CAS  PubMed  Google Scholar 

  16. Gibiansky L et al (2008) Approximations of the target-mediated drug disposition model and identifiability of model parameters. J Pharmacokinet Pharmacodyn 35:573–591

    Article  CAS  PubMed  Google Scholar 

  17. Holmes MH (1995) Introduction to perturbation methods. In: Marsden JE, et al (eds) Texts in applied mathematics, vol 20, 1 edn. Springer-Verlag, New York p 337

  18. Marathe A, Krzyzanski W, Mager DE (2009) Numerical validation and properties of a rapid binding approximation of a target-mediated drug disposition pharmacokinetic model. J Pharmacokinet Pharmacodyn 36:199–219

    Article  CAS  PubMed  Google Scholar 

  19. Orditura M et al (2009) Correlation between efficacy and skin rash occurrence following treatment with the epidermal growth factor receptor inhibitor cetuximab: a single institution retrospective analysis. Oncol Rep 21(4):1023–1028

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank Dr. Wolfgang Richter and Dr. Thierry Lavé for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Peter Grimm.

Appendix

Appendix

Derivation of CLTM(C) for the recycling case

Using \( K_{M} = {\tfrac{{k_{off} + k_{eli} }}{{k_{on} }}} = K_{d} \cdot k_{eli} \cdot \left( {{\tfrac{1}{{k_{off} }}} + {\tfrac{1}{{k_{eli} }}}} \right) \), the equations for binding equilibrium 1 and for target conservation are written as

$$ K_{M} \cdot RC = R \cdot C $$
(17)
$$ RC = R_{0} - R $$
(18)

which, after elimination of R become

$$ K_{M} \cdot RC = \left( {R_{0} - RC} \right) \cdot C. $$
(19)

At equilibrium, target-mediated clearance corresponds to the elimination of drug-target complexes. It is thus defined by

$$ CL_{TM} (C) \cdot C = V_{pla} \cdot k_{eli} \cdot RC $$
(20)

and solving 19 for RC thus yields

$$ CL_{TM} (C) = {\frac{{k_{eli} \cdot R_{0} \cdot V_{pla} }}{{K_{M} + C}}}. $$
(21)

Furthermore, target-mediated clearance is maximal as C → 0 and thus

$$ CL_{TM,\max } = {\frac{{k_{eli} \cdot R_{0} \cdot V_{pla} }}{{K_{M} }}} $$
(22)

From this Eq. 2 follows directly.

Derivation of CLTM(C) for the target turnover case

The relevant equations are now 1 and 4, which can be written as

$$ K_{M} \cdot RC = R \cdot C $$
(23)
$$ \kappa \cdot RC = R_{E} - R $$
(24)

where 1 was used to simplify 4, \( \kappa = {{k_{eli} } \mathord{\left/ {\vphantom {{k_{eli} } {k_{de} }}} \right. \kern-\nulldelimiterspace} {k_{de} }} \), and K M being defined as previously. Eliminating R and sorting terms, this becomes:

$$ RC \cdot \left[ {K_{M} + \kappa \cdot C} \right] = R_{E} \cdot C $$
(25)

Then, introducing a new \( \tilde{K}_{M} = {{K_{M} } \mathord{\left/ {\vphantom {{K_{M} } \kappa }} \right. \kern-\nulldelimiterspace} \kappa } = K_{d} \cdot k_{de} \cdot \left( {{\tfrac{1}{{k_{off} }}} + {\tfrac{1}{{k_{eli} }}}} \right) \) and using the definition for target-mediated clearance 20 again,

$$ CL_{TM} (C) = {\frac{{k_{de} \cdot R_{E} \cdot V_{pla} }}{{\tilde{K}_{M} + C}}} $$
(26)

As before, target-mediated clearance is maximal as C → 0:

$$ CL_{TM,\max } = {\frac{{k_{de} \cdot R_{E} \cdot V_{pla} }}{{\tilde{K}_{M} }}} $$
(27)

from which 5 ensues easily.

Derivation of CLTM(C) for the permeability limitation case

Eqs. 1, 4, and 7 can be rewritten as

$$ K_{M} \cdot RC = R \cdot C_{tar} $$
(28)
$$ \kappa \cdot RC = R_{E} - R $$
(29)
$$ \eta \cdot RC = C_{pla} - C_{tar} $$
(30)

with a new parameter combination \( \eta = k_{eli} /k_{per} \). Using the latter two equations to substitute C tar and R in the first equation leads to:

$$ K_{M} \cdot RC = \left( {R_{E} - \kappa \cdot RC} \right) \cdot \left( {C_{pla} - \eta \cdot RC} \right) $$
(31)

Similar to the previous cases, this can be solved for RC in order to calculate the target-mediated clearance directly. Alternatively, introduce

$$ CL_{TM*} = {\frac{{k_{eli} \cdot R_{E} \cdot V_{pla} }}{{K_{M} }}} $$
(32)

and hence, from the definition of target-mediated clearance

$$ RC = {\frac{{CL_{TM} }}{{CL_{TM*} }}} \cdot {\frac{{R_{E} \cdot C_{pla} }}{{K_{M} }}}. $$
(33)

Substitution into 31 and after simplifying R E and C pla :

$$ {\frac{{CL_{TM} }}{{CL_{TM*} }}} = \left( {1 - \kappa \cdot {\frac{{C_{pla} }}{{K_{M} }}} \cdot {\frac{{CL_{TM} }}{{CL_{TM*} }}}} \right) \cdot \left( {1 - \eta \cdot {\frac{{R_{E} }}{{K_{M} }}} \cdot {\frac{{CL_{TM} }}{{CL_{TM*} }}}} \right) $$
(34)

Introducing again \( \tilde{K}_{M} = {{K_{M} } \mathord{\left/ {\vphantom {{K_{M} } \kappa }} \right. \kern-\nulldelimiterspace} \kappa } = K_{d} \cdot k_{de} \cdot \left( {{\tfrac{1}{{k_{off} }}} + {\tfrac{1}{{k_{eli} }}}} \right) \), and defining \( H = {\tfrac{\eta }{\kappa }} \cdot {\tfrac{{R_{E} }}{{\tilde{K}_{M} }}} = {\tfrac{{k_{de} }}{{k_{per} }}} \cdot {\tfrac{{R_{E} }}{{\tilde{K}_{M} }}} \) this equation is

$$ {\frac{{CL_{TM} }}{{CL_{TM*} }}} = \left( {1 - {\frac{{C_{pla} }}{{\tilde{K}_{M} }}} \cdot {\frac{{CL_{TM} }}{{CL_{TM*} }}}} \right) \cdot \left( {1 - H \cdot {\frac{{CL_{TM} }}{{CL_{TM*} }}}} \right) $$
(35)

As previously, target-mediated clearance is maximal as C → 0, i.e.,

$$ {\frac{{CL_{TM,\max } }}{{CL_{TM*} }}} = 1 - H \cdot {\frac{{CL_{TM,\max } }}{{CL_{TM*} }}} $$
(36)

from which it follows that

$$ CL_{TM,\max } = {\frac{{CL_{TM*} }}{1 + H}} $$
(37)

This equation is equivalent to 10. It is then a matter of straight-forward (but somewhat tedious) algebra to bring 35 in the form of 8.

Derivation of saturation of CL versus saturation of target

Substituting RC from equation 29, 33 becomes

$$ 1 - {\frac{R}{{R_{E} }}} = {\frac{{CL_{TM} }}{{CL_{TM*} }}} \cdot {\frac{{C_{pla} }}{{\tilde{K}_{M} }}} $$
(38)

Target-mediated clearance being a continuous and monotonous function of plasma concentration, this equation can be used to express C pla as a function of CL TM :

$$ C_{pla} = \tilde{K}_{M} \cdot {{\left( {1 - {\frac{R}{{R_{E} }}}} \right)} \mathord{\left/ {\vphantom {{\left( {1 - {\frac{R}{{R_{E} }}}} \right)} {\left( {{\frac{{CL_{TM} }}{{CL_{TM*} }}}} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {{\frac{{CL_{TM} }}{{CL_{TM*} }}}} \right)}} $$
(39)

Substituting C pla and RC in Eq. 31 by the use of Eqs. 29 and 39 and by applying relationship 37 yields (after some simplifications)

$$ 1 = {\frac{R}{{R_{E} }}} \cdot \left( {{\frac{1 + H}{{{\tfrac{{CL_{TM} }}{{CL_{TM,\max } }}}}}} - H} \right) $$
(40)

from which 12 follows easily.

Derivation of efficacious concentration

Substituting RC from Eq. 29 into 31 yields an equation which relates free receptor concentration (the closest parent to efficacy in this model framework) to C pla :

$$ R_{E} - R = R \cdot \left( {{\frac{{C_{pla} }}{{\tilde{K}_{M} }}} - H \cdot {\frac{{R_{E} - R}}{{R_{E} }}}} \right) $$
(41)

Equation 13 follows then directly, after solving for C pla . If efficacy is defined by a required ‘free fraction’ of receptors, \( {\tfrac{R}{{R_{E} }}} \), C pla can then be identified with the efficacious concentration C eff .

For a given efficacious concentration C eff , the free fraction of off-site receptors is given by solving Eq. 13 for R/R E and taking the limit H → 0, or

$$ {\frac{{R_{E} }}{{R_{off {\text {-}} site} }}} = 1 + {{C_{eff} } \mathord{\left/ {\vphantom {{C_{eff} } {\tilde{K}_{M} }}} \right. \kern-\nulldelimiterspace} {\tilde{K}_{M} }} $$

On the other hand, C eff is defined based on the free fraction of on-site receptors, i.e., by Eq. 13, and therefore

$$ {\frac{{R_{E} }}{{R_{off {\text {-}} site} }}} = 1 + {\frac{{1 - {\tfrac{{R_{on {\text {-}} site} }}{{R_{E} }}}}}{{{\tfrac{{R_{on {\text {-}} site} }}{{R_{E} }}}}}} \cdot \left( {1 + {\tfrac{{R_{on {\text {-}} site} }}{{R_{E} }}}H} \right) $$
(42)

Multiplying both sides of the equation by R on-site /R E and after some more algebra, 14 is obtained. The equation is easily generalized for the case where R E is not the same for the on-site and the off-site targets.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimm, H.P. Gaining insights into the consequences of target-mediated drug disposition of monoclonal antibodies using quasi-steady-state approximations. J Pharmacokinet Pharmacodyn 36, 407–420 (2009). https://doi.org/10.1007/s10928-009-9129-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-009-9129-5

Keywords

Navigation