Skip to main content

Advertisement

Log in

A mechanistic model for the sex-specific response to nalbuphine and naloxone in postoperative pain

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

We develop a mechanistic model for post-operative pain and apply it to describe the pharmacodynamic effects of the kappa-opioids nalbuphine and naloxone administered either alone or in combination in patients after surgical removal of one or more madibular third molar teeth. Data were obtained from 6 clinical studies in which a total of 304 patients were intravenously administered single doses of 2.5, 5, 10 or 20 mg of nalbuphine. Some groups also received 0.2 or 0.4 mg of naloxone. A total of 3,040 Visual analog scale (VAS) pain ratings were recorded at 20 min intervals for 3 h after drug administration. We used a two-site indirect action model to describe early and late pain and to incorporate the effect of nalbuphine and naloxone on pain over time. A mixed effects statistical model was used to account for inter- and intra-individual variability. Our model estimated the population average baseline pain score in men to be lower than that in women (68 vs. 76 mm on the 100 mm VAS scale). The model confirmed a late increase in pain (anti-analgesia) and estimated the lag time for the start of anti-analgesia to be 73 min after study drug administration. The maximum early phase pain score is 81.6 mm while the maximum anti-analgesia is 16.1 mm. The nalbuphine dose required to reduce early pain by 50% (ED50) was estimated to be 5.85 mg and the naloxone dose required to reduce late phase pain by 50% was estimated to be 0.5 mg. The model confirmed the results from conventional statistical analyses performed previously on individual studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gear RW, Miaskowski C, Gordon NC, Paul SM, Heller PH and Levine JD (1999). The kappa opioid nalbuphine produces gender- and dose-dependent analgesia and antianalgesia in patients with postoperative pain. Pain 83: 339–345

    Article  PubMed  CAS  Google Scholar 

  2. Gear RW, Gordon NC, Miaskowski C, Paul SM, Heller PH and Levine JD (2003). Sexual dimorphism in very low dose nalbuphine postoperative analgesia. Neurosci Lett 339: 1–4

    Article  PubMed  CAS  Google Scholar 

  3. Gear RW, Miaskowski C, Gordon NC, Paul SM, Heller PH and Levine JD (1996). Kappa-opioids produce significantly greater analgesia in women than in men. Nat Med 2: 1248–1250

    Article  PubMed  CAS  Google Scholar 

  4. Gear RW, Gordon NC, Heller PH, Paul S, Miaskowski C and Levine JD (1996). Gender difference in analgesic response to the kappa-opioid pentazocine. Neurosci Lett 205: 207–209

    Article  PubMed  CAS  Google Scholar 

  5. Gear RW, Miaskowski C, Gordon NC, Paul SM, Heller PH and Levine JD (2000). Action of naloxone on gender-dependent analgesic and antianalgesia effects of nalbuphine in humans. The Journal of Pain 1: 122–127

    Article  Google Scholar 

  6. Gear RW, Gordon NC, Miaskowski C, Paul SM, Heller PH and Levine JD (2003). Dose ratio is important in maximizing naloxone enhancement of nalbuphine analgesia in humans. Neurosci Lett 351: 5–8

    Article  PubMed  CAS  Google Scholar 

  7. Levine JD, Gordon NC, Taiwo YO and Coderre TJ (1998). Potentiation of pentazocine analgesia by low-dose naloxone. J Clin Invest 82: 1574–1577

    Article  Google Scholar 

  8. Levine JD and Gordon NC (1984). Influence of the method of drug administration on analgesic response. Nature 312: 755–756

    Article  PubMed  CAS  Google Scholar 

  9. Dayneka NL, Garg V and Jusko WJ (1993). Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 21: 457–478

    Article  PubMed  CAS  Google Scholar 

  10. Davidian M, Giltinan DM (1995) Nonlinear models for repeated measurement data. Chapman and Hall

  11. Boeckmann AJ, Beal SL, Sheiner LB (2006) NONMEM VI user’s guides. Division of Clinical Pharmacology, University of California at San Francisco

  12. Akaike H (1974) A new look at the ststistical model identification problem. IEEE Trans Automat Contr 716–723

  13. Hannan E (1987) Rational transfer function approximation. Statist Sci 1029–1054

  14. Schwartz G (1978) Estimating the dimension of a model. The Annals of Statistics 461–464

  15. S-Plus. Insightful corporation http://www.Insightful.Com/

  16. Berenbaum MC (1985). The expected effect of a combination of agents: The general solution. J Theor Biol 114: 413–431

    PubMed  CAS  Google Scholar 

  17. Troconiz IF, Sheiner LB and Verotta D (1994). Semiparametric models for drug interactions. J Applied Physiology 76: 2224–2233

    CAS  Google Scholar 

  18. Earp J, Krzyzanski W, Chakraborty A, Zamacona M and Jusko W (2004). Assessment of drug interactions relevant to pharmacodynamic indirect response models. Journal of Pharmacokinetics and Pharmacodynamics 31: 345–380

    Article  PubMed  CAS  Google Scholar 

  19. Faucett JA (1994). Depression in painful chronic disorders: The role of pain and conflict about pain. J Pain Symptom Manage 9: 520–526

    Article  PubMed  CAS  Google Scholar 

  20. Ho ST, Wang JJ, Hu OY, Chiang PS and Lee SC (1996). Determination of nalbuphine by high- performance liquid chromatography with ultraviolet detection: Application to human and rabbit pharmacokinetic studies. J Chromatogr B Biomed Appl 678: 289–296

    Article  PubMed  CAS  Google Scholar 

  21. Jaillon P, Gardin ME, Lecocq B, Richard MO, Meignan S, Blondel Y, Grippat JC, Bergnieres J and Vergnoux O (1989). Pharmacokinetics of nalbuphine in infants, young healthy volunteers, and elderly patients. Clin Pharmacol Ther 46: 226–233

    Article  PubMed  CAS  Google Scholar 

  22. Aitkenhead AR, Lin ES and Achola KJ (1988). The pharmacokinetics of oral and intravenous nalbuphine in healthy volunteers. Br J Clin Pharmacol 25: 264–268

    PubMed  CAS  Google Scholar 

  23. Lo MW, Schary WL and Whitney CC Jr (1987). The disposition and bioavailability of intravenous and oral nalbuphine in healthy volunteers. J Clin Pharmacol 27: 866–873

    PubMed  CAS  Google Scholar 

  24. Lo MW, Lee FH, Schary WL and Whitney CC Jr (1987). The pharmacokinetics of intravenous, intramuscular, and subcutaneous nalbuphine in healthy subjects. Eur J Clin Pharmacol 33: 297–301

    Article  PubMed  CAS  Google Scholar 

  25. Albeck H, Woodfield S and Kreek MJ (1989). Quantitative and pharmacokinetic analysis of naloxone in plasma using high-performance liquid chromatography with electrochemical detection and solid-phase extraction. J Chromatogr 488: 435–445

    Article  PubMed  CAS  Google Scholar 

  26. Berkowitz BA (1976). The relationship of pharmacokinetics to pharmacological activity: Morphine, methadone and naloxone. Clin Pharmacokinet 1: 219–230

    Article  PubMed  CAS  Google Scholar 

  27. Kim S, Wagner HN Jr, Villemagne VL, Kao PF, Dannals RF, Ravert HT, Joh T, Dixon RB and Civelek AC (1997). Longer occupancy of opioid receptors by nalmefene compared to naloxone as measured in vivo by a dual-detector system. J Nucl Med 38: 1726–1731

    PubMed  CAS  Google Scholar 

  28. Asai T (1998). Effects of morphine, nalbuphine and pentazocine on gastric emptying of indigestible solids. Arzneimittelforschung 48: 802–805

    PubMed  CAS  Google Scholar 

  29. Pick CG, Paul D and Pasternak GW (1992). Nalbuphine, a mixed kappa 1 and kappa 3 analgesic in mice. J Pharmacol Exp Ther 262: 1044–1050

    PubMed  CAS  Google Scholar 

  30. Cicero TJ, Owens DP, Schmoeker PF and Meyer ER (1983). Morphine-induced supersensitivity to the effects of naloxone on luteinizing hormone secretion in the male rat. J Pharmacol Exp Ther 225: 35–41

    PubMed  CAS  Google Scholar 

  31. Martin JR and Takemori AE (1987). Modification of the development of acute opiate tolerance by increased dopamine receptor sensitivity. J Pharmacol Exp Ther 241: 48–55

    PubMed  CAS  Google Scholar 

  32. Hanks GW and Reid C (2005). Contribution to variability in response to opioids. Support Care Cancer 13: 145–152

    Article  PubMed  Google Scholar 

  33. Revill SI, Robinson JO, Rosen M and Hogg MI (1976). The reliability of a linear analogue for evaluating pain. Anaesthesia 31: 1191–1198

    Article  PubMed  CAS  Google Scholar 

  34. Joyce CR, Zutshi DW, Hrubes V and Mason RM (1975). Comparison of fixed interval and visual analogue scales for rating chronic pain. Eur J Clin Pharmacol 8: 415–420

    Article  PubMed  CAS  Google Scholar 

  35. Khasar SG, Gear RW and Levine JD (2003). Absence of nalbuphine anti-analgesia in the rat. Neurosci Lett 345: 165–168

    Article  PubMed  CAS  Google Scholar 

  36. Paronis CA and Holtzman SG (1991). Increased analgesic potency of mu agonists after continuous naloxone infusion in rats. J Pharmacol Exp Ther 259: 582–589

    PubMed  CAS  Google Scholar 

  37. Zhu J, Luo LY, Li JG, Chen C and Liu-Chen LY (1997). Activation of the cloned human kappa opioid receptor by agonists enhances [35s]gtpgammas binding to membranes: Determination of potencies and efficacies of ligands. J Pharmacol Exp Ther 282: 676–684

    PubMed  CAS  Google Scholar 

  38. Errick JK and Heel RC (1983). Nalbuphine. A preliminary review of its pharmacological properties and therapeutic efficacy. Drugs 26: 191–211

    CAS  Google Scholar 

  39. Chien CC and Pasternak GW (1994). Selective antagonism of opioid analgesia by a sigma system. J Pharmacol Exp Ther 271: 1583–1590

    PubMed  CAS  Google Scholar 

  40. Chien CC and Pasternak GW (1993). Functional antagonism of morphine analgesia by (+)-pentazocine: Evidence for an anti-opioid sigma 1 system. Eur J Pharmacol 250: R7–R8

    Article  PubMed  CAS  Google Scholar 

  41. Flores-Murrieta FJ, Ko HC, Flores-Acevedo DM, Lopez-Munoz FJ, Jusko WJ, Sale ME and Castaneda-Hernandez G (1998). Pharmacokinetic-pharmacodynamic modeling of tolmetin antinociceptive effect in the rat using an indirect response model: A population approach. J Pharmacokinet Biopharm 26: 547–557

    PubMed  CAS  Google Scholar 

  42. Rodriguez M, Carlos MA, Ortega I, Suarez E, Calvo R and Lukas JC (2002). Sex specificity in methadone analgesia in the rat: A population pharmacokinetic and pharmacodynamic approach. Pharm Res 19: 858–867

    Article  PubMed  CAS  Google Scholar 

  43. Boni J, Korth-Bradley J, McGoldrick K, Appel A and Cooper S (1999). Pharmacokinetic and pharmacodynamic action of etodolac in patients after oral surgery. J Clin Pharmacol 39: 729–737

    Article  PubMed  CAS  Google Scholar 

  44. Dahan A, Romberg R, Teppema L, Sarton E, Bijl H and Olofsen E (2004). Simultaneous measurement and integrated analysis of analgesia and respiration after an intravenous morphine infusion. Anesthesiology 101: 1201–1209

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Verotta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kshirsagar, S., Gear, R., Levine, J. et al. A mechanistic model for the sex-specific response to nalbuphine and naloxone in postoperative pain. J Pharmacokinet Pharmacodyn 35, 69–83 (2008). https://doi.org/10.1007/s10928-007-9076-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-007-9076-y

Keywords

Navigation