Skip to main content

Advertisement

Log in

Estimation of Population Pharmacokinetic Parameters of Saquinavir in HIV Patients with the MONOLIX Software

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

In nonlinear mixed-effects models, estimation methods based on a linearization of the likelihood are widely used although they have several methodological drawbacks. Kuhn and Lavielle (Comput. Statist. Data Anal. 49:1020–1038 (2005)) developed an estimation method which combines the SAEM (Stochastic Approximation EM) algorithm, with a MCMC (Markov Chain Monte Carlo) procedure for maximum likelihood estimation in nonlinear mixed-effects models without linearization. This method is implemented in the Matlab software MONOLIX which is available at http://www.math.u-psud.fr/~lavielle/monolix/logiciels. In this paper we apply MONOLIX to the analysis of the pharmacokinetics of saquinavir, a protease inhibitor, from concentrations measured after single dose administration in 100 HIV patients, some with advance disease. We also illustrate how to use MONOLIX to build the covariate model using the Bayesian Information Criterion. Saquinavir oral clearance (CL/F) was estimated to be 1.26 L/h and to increase with body mass index, the inter-patient variability for CL/F being 120%. Several methodological developments are ongoing to extend SAEM which is a very promising estimation method for population pharmacockinetic/pharmacodynamic analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beal S.L., Sheiner L.B. (1980) The NONMEM System. Am. Stat. 34:118–119

    Article  Google Scholar 

  • Sheiner L.B., Rosenberg B., Marathe V.V. (1977). Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J. Pharmacokinet. Biopharm. 5:445–479

    Article  PubMed  CAS  Google Scholar 

  • Davidian M., Giltinan D.M. (2003). Non linear models for repeated measurement data: an overview and update. J. Agric. Biol. Environ. Stat. 8:387–419

    Article  Google Scholar 

  • Ramos R.Q., Pantula S.G. (1995). Estimation of nonlinear random coefficient models. Statist. Probab. Lett. 24:49–56

    Article  Google Scholar 

  • Vonesh E.F. (1996) A note on the use of Laplace’s approximation for nonlinear mixed-effects models. Biometrika 83:447–452

    Article  Google Scholar 

  • Ko H., Davidian M. (2000). Correcting for measurement error in individual-level covariates in nonlinear mixed effect models. Biometrics 56:368–375

    Article  PubMed  CAS  Google Scholar 

  • Dempster A.P., Laird N.M., Rubin D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B. Stat. Methodol. 1:1–38

    Google Scholar 

  • Lindstrom M.J., Bates D.M. (1988). Newton-Raphson and EM algorithms for linear mixed-effects models for repeated-measures data. J. Am. Stat. Assoc. 83:1014–1022

    Article  Google Scholar 

  • Mentré F., Gomeni R. (1995). A two-step algorithm for estimation on non-linear mixed-effects with an evaluation in population pharmacokinetics. J. Biopharm. Stat. 5:141–158

    PubMed  Google Scholar 

  • Wei G.C., Tanner M.Z. (1991). Applications of multiple imputation to the analysis of censored regression data. Biometrics 47:1297–1309

    Article  PubMed  CAS  Google Scholar 

  • Walker G. (1996). An EM algorithm for non-linear random effects models. Biometrics 52:934–944

    Article  Google Scholar 

  • Wu L. (2002). A joint model for nonlinear mixed-effects models with censoring and covariates measured with error, with application to AIDS studies. J. Am. Statist. Assoc. 97:955–964

    Article  Google Scholar 

  • Wu L. (2004). Exact and approximate inferences for nonlinear mixed-effects models with missing covariates. J. Am. Statist. Assoc. 99: 700–709

    Article  Google Scholar 

  • Delyon B., Lavielle M., Moulines E. (1999). Convergence os a stochastic approximation version of the EM procedure. Ann. Stat. 27:94–128

    Article  Google Scholar 

  • Kuhn E., Lavielle M. (2005). Maximum likelihood estimation in nonlinear mixed effects models. Comput. Statist. Data. Anal. 49:1020–1038

    Article  Google Scholar 

  • Trout H., Mentré F., Panhard X., Kodjo A., Escaut L., Pernet P., Gobert J.G., Vittecoq D., Knellwolf A.L., Caulin C., Bergmann J.F. (2004). Enhanced saquinavir exposure in HIV1-infected patients with diarrhea and/or wasting syndrome. Antimicrob. Agents Chemother. 48:538–545

    Article  PubMed  CAS  Google Scholar 

  • P. Girard and F. Mentré. A comparison of estimation methods in nonlinear mixed effects models using a blind analysis. PAGE 14 (2005); Abstr 834 [www.page-meeting. org/?abstract=834].

  • Louis T.A. (1982). Finding the observed information matrix when using EM algorithm. J. R. Stat. Soc. B. 44:226–233

    Google Scholar 

  • Kowalski K.G., Hutmacher M.M. (2001). Efficient screening of covariates in population models using Wald’s approximation to the likelihood ratio test. J. Pharmacokinet. Pharmacodyn. 28:253–275

    Article  PubMed  CAS  Google Scholar 

  • D. O. Stram and J. W. Lee. Variance components testing in the longitudinal mixed effects model. Biometrics 50(4):1171–1177 (1994). Erratum in: Biometrics 51(3):1196 (1995).

    Google Scholar 

  • Jonsson E.N., Karlsson M.O. (1998) Automated covariate model building within NONMEM. Pharm. Res. 15:1463–1468

    Article  PubMed  CAS  Google Scholar 

  • Kass R.E., Raftery A.E. (1995). Bayes factors. J. Am. Stat. Assoc. 90:773–795

    Article  Google Scholar 

  • Verbeke G., Molenberghs G. (2004). Linear Mixed Effect Models for Longitudinal Data. New York, Springer

    Google Scholar 

  • Burnham K.P. Anderson D.R. (2004). Multimodel Inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 33:261–304

    Article  Google Scholar 

  • Ramos J.I. (1999). Linearized methods for ordinary differential equations. Appl. Math. Comput. 104:109–129

    Article  Google Scholar 

  • S. Donnet and A. Samson. Estimation of parameters in incomplete data models defined by dynamical systems. J. Stat. Plan. Infer. to appear (2007).

  • S. Retout, E. Comets, A. Samson, and F. Mentré. Designs in nonlinear mixed effects models: application to HIV viral load decrease with evaluation, optimization and determination of the power of the test of a treatment effect. PAGE 14 (2005); Abstr 775 [.page-meeting.org/?abstract=775]

  • Retout S., Mentré F. (2003). Optimization of individual and population designs using Splus. J. Pharmacokinet. Pharmacodyn. 30:417–443

    Article  PubMed  Google Scholar 

  • Pillai G.C., Mentré F F., Steimer J.L. (2005). Non-linear mixed effects modeling – from methodology and software development to driving implementation in drug development science. J. Pharmacokinet. Pharmacodyn. 32:161–183

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Lavielle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavielle, M., Mentré, F. Estimation of Population Pharmacokinetic Parameters of Saquinavir in HIV Patients with the MONOLIX Software. J Pharmacokinet Pharmacodyn 34, 229–249 (2007). https://doi.org/10.1007/s10928-006-9043-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-006-9043-z

Keywords

Navigation