Skip to main content

Advertisement

Log in

Investigation of a Cellular Pharmacodynamic Model Exhibiting Sharp Response Sensitivity and Tolerance

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

The potential relevance of a kinetic model for switch-like behavior in biochemical reactions to pharmacodynamics is explored. This model, which postulates that drug acts by modulating the balance of kinase and phosphatase activities, and their effect on the phosphorylation state of an effector molecule critical in determining drug effect, predicts sharp concentration–effect profiles without explicit incorporation of cooperativity. The degree of sharpness depends on concentration of the critical effector. It is argued that such a model can account for inter-individual differences in pharmacodynamic sensitivity profiles, as well as intra-individual changes in sensitivity associated with time-varying physiological processes or disease. By augmenting the model with a kinetic description of critical effector synthesis and degradation in the nonphosphorylated and phosphorylated forms, a putative mechanism for drug tolerance is revealed. The combined model predicts that tolerance, in addition to attenuating the maximum effect, may lead to a decrease in apparent Hill coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Csajka C., Verotta D. (2006) Pharmacokinetic–pharmacodynamic modelling: history and perspectives. J. Pharmacokinet. Pharmacodynam. 33:227–279

    Article  CAS  Google Scholar 

  2. Mager D.E., Jusko W.J. (2001) Pharmacodynamic modeling of time-dependent transduction systems. Clin. Pharmacol. Therapeut. 70:210–216

    Article  CAS  Google Scholar 

  3. Stanski D.R., Ham J., Miller R.D., Sheiner L.B. (1979) Pharmacokinetics and pharmacodynamics of d-tubocurarine during nitrous oxide-narcotic and halothane anesthesia in man. Anesthesiology 51:235–241

    Article  PubMed  CAS  Google Scholar 

  4. Holford N.H.G., Sheiner L.B. (1982) Kinetics of pharmacologic response. Pharmac. Ther. 16:143–166

    Article  CAS  Google Scholar 

  5. Fuseau E., Sheiner L.B. (1984) Simultaneous modeling of pharmacokinetics and pharmacodynamics with a nonparametric pharmacodynamic model. Clin. Pharmacol. Ther. 35:733–741

    Article  PubMed  CAS  Google Scholar 

  6. Unakdat J.D., Bartha F., Sheiner L.B. (1986) Simultaneous modeling of pharmacokinetics and pharmacodynamics with nonparametric kinetic and dynamic models. Clin. Pharmacol. Ther. 40:86–93

    Article  Google Scholar 

  7. Dayneka N.I., Garg V., Jusko W.J. (1993) Comparison of four models of indirect pharmacodynamic responses. J. Pharmacokinet. Biopharmaceut. 4:457–478

    Article  Google Scholar 

  8. Black J.W., Leff P. (1983) Operational models of pharmacological response. Proc. Roy. Soc. Lond. B 220:141–162

    Article  CAS  Google Scholar 

  9. Colquhoun D. (1998) Binding, gating, affinity and efficacy: the interpretation of structure–activity relationships for agonists and of the effects of mutating receptors. Br. J. Pharmacol. 125:923–947

    Article  Google Scholar 

  10. Levy G. (1998) Predicting effective drug concentrations for individual patients. Clin. Pharmacokinet. 34:323–333

    Article  PubMed  CAS  Google Scholar 

  11. Levy G. (1998) Impact of pharmacodynamic variability on drug delivery. Adv. Drug Deliv. Revs. 33:201–206

    Article  CAS  Google Scholar 

  12. Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P. (2002) Molecular Biology of the Cell. Garland Science, New York

    Google Scholar 

  13. Lauffenburger D.A., Linderman J.J. (1993) Receptors: Models for Binding, Trafficking and Signaling. Oxford, New York

    Google Scholar 

  14. Goldbeter A., Koshland D.E.J. (1981) An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl. Acad. Sci. USA 78:6840–6844

    Article  PubMed  CAS  Google Scholar 

  15. Koshland D.E.J., Goldbeter A., Stock J.B. (1982) Amplification and adaptation in regulatory and sensory systems. Science 217:220–225

    Article  PubMed  CAS  Google Scholar 

  16. Goldbeter A., Koshland D.E.J. (1984) Ultrasensitivity in biochemical systems controlled by covalent modification. J. Biol. Chem. 259:14441–14447

    PubMed  CAS  Google Scholar 

  17. Bray D. (1995) Protein molecules as computational elements in living cells. Nature 376:307–312

    Article  PubMed  CAS  Google Scholar 

  18. Bennett B.M., Leitman D.C., Schroeder H., Kawamoto J.J., Nakatsu K., Murad F. (1989) Relationship between biotransformation of glyceryl trinitrate and cyclic GMP accumulation in various cell culture lines. J. Pharmacol. Exp. Ther. 250:316–323

    PubMed  CAS  Google Scholar 

  19. Kukovetz W.R., Holzmann S. (1990) Tolerance to Nitric Oxide in Bovine Coronary Arteriesin. In: Rubanyi G.M., Vanhoutte P.M. (eds). Endothelium-Derived Relaxing Factors. Karger, Basel

    Google Scholar 

  20. Haj-Yehia A.I., Benet L.Z. (1996) In vivo depletion of free thiols does not account for nitroglycerin-induced tolerance: a thiol–nitrate interaction hypothesis as an alternative explanation for nitroglycerin activity and tolerance. J. Pharmacol. Exp. Ther. 278: 1296–1305

    PubMed  CAS  Google Scholar 

  21. LaPorte D.C., Thorsness P.E., Koshland D.E.J. (1985) Compensatory phosphorylation of isocitrate dehydrogenase. J. Biol. Chem. 19:10563–10568

    Google Scholar 

  22. Meinke M.H., Bishop J.S., Edstrom R.D. (1986) Zero-order ultrasenstivity in the regulation of glycogen phosphorylase. Proc. Natl. Acad. Sci. USA 83:2865–2868

    Article  PubMed  CAS  Google Scholar 

  23. Goldbeter A., Koshland D.E.J. (1987) Energy expenditure in the control of biochemical systems by covalent modification. J. Biol. Chem. 262:4460–4471

    PubMed  CAS  Google Scholar 

  24. Goldbeter A. (1991) A minimal model for the mitotic oscillator involving cyclin and Cdc2 kinase. Proc. Natl. Acad. Sci. USA 88:9107–9111

    Article  PubMed  CAS  Google Scholar 

  25. Huang C.-Y.F., Ferrell J.E. (1996) Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. USA 93:10078–10083

    Article  PubMed  CAS  Google Scholar 

  26. Kolch W., Calder M., Gilbert D. (2005) When kinases meet mathematics: the systems biology of mapk signaling. FEBS Lett. 579:1891–1895

    Article  PubMed  CAS  Google Scholar 

  27. Kong A.-N.T., Mandlekar S., Yu R., Lei W., Fasanmande A. (1999) Pharmacodynamics and toxicodynamics of drug action: signaling in cell survival and cell death. Pharmaceut. Res. 16:790–797

    Article  CAS  Google Scholar 

  28. Sun Y.-N., Jusko W.J. (1998) Transit compartments versus gamma distribution function to model signal transduction processes in pharmacodynamics. J. Pharm. Sci. 87:732–737

    Article  PubMed  CAS  Google Scholar 

  29. Ramanathan M. (2002) A dispersion model for cellular signal transduction cascades. Pharm. Res. 19:1544–1548

    Article  PubMed  CAS  Google Scholar 

  30. Heinrich R., Neel B.G., Rapoport T.A. (2002) Mathematical models of protein kinase signal transduction. Mol. Cell 9:957–970

    Article  PubMed  CAS  Google Scholar 

  31. Montminy M. (1997) Transcriptional regulation by cyclic AMP. Ann. Rev. Biochem. 66:807–822

    Article  PubMed  CAS  Google Scholar 

  32. Lonze B.E., Ginty D.D. (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35:605–623

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald A. Siegel.

Additional information

I participated as tutor for several years in the annual Workshop on Advanced Pharmacokinetics/Pharmacodynamics, held alternately in San Francisco and Sils Maria, Switzerland, with lectures presented by Lewis Sheiner and Malcolm Rowland. A highlight of this course was a series of skits, including one-act miniplays, choruses, and mock game shows, presented by tutorial groups during the workshop banquet. Grist was repeatedly provided by Lewis’s declaration, “The data have spoken,” written in large letters on an overhead transparency at the end of a lecture on model fitting. The song “Lewis, Lewis” was performed by my tutorial group during one of these banquets.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siegel, R.A. Investigation of a Cellular Pharmacodynamic Model Exhibiting Sharp Response Sensitivity and Tolerance. J Pharmacokinet Pharmacodyn 34, 87–101 (2007). https://doi.org/10.1007/s10928-006-9042-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-006-9042-0

Keywords

Navigation