Modelling Response Time Profiles in the Absence of Drug Concentrations: Definition and Performance Evaluation of the K–PD Model

The plasma concentration–time profile of a drug is essential to explain the relationship between the administered dose and the kinetics of drug action. However, in some cases such as in pre-clinical pharmacology or phase-III clinical studies where it is not always possible to collect all the required PK information, this relationship can be difficult to establish. In these circumstances several authors have proposed simple models that can analyse and simulate the kinetics of the drug action in the absence of PK data. The present work further develops and evaluates the performance of such an approach. A virtual compartment representing the biophase in which the concentration is in equilibrium with the observed effect is used to extract the (pharmaco)kinetic component from the pharmacodynamic data alone. Parameters of this model are the elimination rate constant from the virtual compartment (KDE), which describes the equilibrium between the rate of dose administration and the observed effect, and the second parameter, named EDK50 which is the apparent in vivo potency of the drug at steady state, analogous to the product of EC50, the pharmacodynamic potency, and clearance, the PK “potency” at steady state. Using population simulation and subsequent (blinded) analysis to evaluate this approach, it is demonstrated that the proposed model usually performs well and can be used for predictive simulations in drug development. However, there are several important limitations to this approach. For example, the investigated doses should extend from those producing responses well below the EC50 to those producing ones close to the maximum response, optimally reach steady state response and followed until the response returns to baseline. It is shown that large inter-individual variability on PK–PD parameters will produce biases as well as large imprecision on parameter estimates. It is also clear that extrapolations to dosage routes or schedules other than those used to estimate the parameters should be undertaken with great caution (e.g., in case of non-linearity or complex drug distribution). Consequently, it is advised to apply this approach only when the underlying structural PD and PK are well understood. In any case, K–PD model should definitively not be substituted for the gold standard PK–PD model when correct full model can and should be identified.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Holford N.H., Sheiner L.B. (1982) Kinetics of pharmacologic response. Pharmac. Ther. 16:143–166

    Article  CAS  Google Scholar 

  2. 2.

    Sheiner L.B., Stanski D.R., Vozeh S., Miller R.D., Ham J. (1979) Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin. Pharmacol. Ther. 29:358–371

    Google Scholar 

  3. 3.

    Jusko W.J., Ko H.C. (1994) Physiologic indirect response models characterize diverse types of pharmacodynamic effects. Clin. Pharmacol. Ther. 56:406–419

    PubMed  CAS  Article  Google Scholar 

  4. 4.

    Verotta D., Sheiner L.B. (1995) A general conceptual model for non-steady state pharmacokinetic/pharmacodynamic data [see comments]. J. Pharmacokinet. Biopharm. 23:1–4

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Wade J.R., Kelman A.W., Howie C.A., Whiting B. (1993) Effect of misspecification of the absorption process on subsequent parameter estimation in population analysis. J. Pharmacokinet. Biopharm. 21:209–222

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Wade J.R., Beal S.L., Sambol N.C. (1994) Interaction between structural, statistical, and covariate models in population pharmacokinetic analysis. J. Pharmacokinet. Biopharm. 22: 165–177

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Pillai G., Gieschke R., Goggin T., Jacqmin P., Schimmer R.C., Steimer J.L. (2004) A semimechanistic and mechanistic population PK–PD model for biomarker response to ibandronate, a new bisphosphonate for the treatment of osteoporosis. Br. J. Clin. Pharmacol. 58:618–631

    PubMed  Article  Google Scholar 

  8. 8.

    Derks M.G., van den Berg B.T., van der Zee J.S., Braat M.C., van Boxtel C.J. (1997) Biphasic effect–time courses in man after formoterol inhalation: eosinopenic and hypokalemic effects and inhibition of allergic skin reactions. J. Pharmacol. Exp. Ther. 283:824–832

    PubMed  CAS  Google Scholar 

  9. 9.

    Duffull S.B., Chabaud S., Nony P., Laveille C., Girard P., Aarons L. (2000) A pharmacokinetic simulation model for ivabradine in healthy volunteers. Eur. J. Pharm. Sci. 10:285–294

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Chabaud S., Girard P., Nony P., Boissel J.P. (2002) Clinical trial simulation using therapeutic effect modeling: application to ivabradine efficacy in patients with angina pectoris. J. Pharmacokinet. Pharmacodyn. 29:339–363

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Johnson T.N., Rostami-Hodjegan A. Goddard J.M., Tanner M.S., Tucker G.T. (2002) Contribution of midazolam and its 1-hydroxy metabolite to preoperative sedation in children: a pharmacokinetic–pharmacodynamic analysis. Br. J. Anaesth. 89:428–437

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Snoeck E., Jacqmin P., Van P.A., Danhof M. (1999) A combined specific target site binding and pharmacokinetic model to explore the non-linear disposition of draflazine. J. Pharmacokinet. Biopharm. 27:257–281

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Levy G. (1964) Relationship between rate of elimination of tubocurarine and rate of decline of its pharmacological activity. Br. J. Anaesth. 36:694–5

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Levy G. (1967) Kinetics of pharmacologic activity of succinylcholine in man. J. Pharm. Sci. 56:1657–1688

    Google Scholar 

  15. 15.

    Gibaldi M., Levy G. (1972) Dose-dependent decline of pharmacologic effects of drugs with linear pharmacokinetic characteristics. J. Pharm. Sci. 61:567–9

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Van Rossum J.M. (1977) Kinetics of Drug Action. Springer Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  17. 17.

    Rowland M., Tozer T.N. (1980) Clinical Pharmacokinetics: Concepts and Applications, 1st edn. Lea & Febiger, Philadelphia

    Google Scholar 

  18. 18.

    Verotta D., Sheiner L.B. (1991) Semiparametric analysis of non-steady-state pharmacodynamics. J. Pharmacokinet. Biopharm. 19:691–712

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Gabrielsson J., Jusko W.J., Alari L. (2000) Modeling of dose-response-time data: four examples of estimating the turnover parameters and generating kinetic functions from response profiles. Biopharm. Drug. Dispos. 21:41–52

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Bragg P., Fisher D.M., Shi J., Donati F., Meistelman C., Lau M., Sheiner L.B. (1994) Comparison of twitch depression of the adductor pollicis and the respiratory muscles. Pharmacodynamic modeling without plasma concentrations. Anesthesiology. 80:310–319

    CAS  Google Scholar 

  21. 21.

    Fisher D.M., Wright P.M. (1997) Are plasma concentration values necessary for pharmacodynamic modeling of muscle relaxants?. Anesthesiology 86:567–575

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Lalonde R.L., Gaudreault J., Karhu D.A., Marriott T.B. (1999) Mixed-effects modeling of the pharmacodynamic response to the calcimimetic agent R-568. Clin. Pharmacol. Ther. 65:40–49

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    J. Gabrielsson and D. Weiner. Pharmacokinetic and Pharmacodynamic Data Analysis: Concepts & Applications. Swedish Pharmaceutical Press, 2000.

  24. 24.

    Beal S.L., Sheiner L.B. (1992) NONMEM User’s Guide, Part I. University of California at San Francisco, San Francisco

    Google Scholar 

  25. 25.

    P. Girard and F. Mentré. A comparison of estimation methods in non-linear mixed effects models using a blind analysis. PAGE 14 (2005) Abstr 834 [www.page-meeting.org/?abstract=834].

  26. 26.

    van Schaick E.A., de Greef H.J., Langemeijer M.W., Sheehan M.J., IJzerman A.P., Danhof M. (1997) Pharmacokinetic–pharmacodynamic modelling of the anti-lipolytic and anti-ketotic effects of the adenosine A1-receptor agonist N 6-(p-sulfophenyl) adenosine in rats. Br. J. Pharmacol. 122: 525–533

    PubMed  Article  Google Scholar 

  27. 27.

    P. Jacqmin. Modelling of kinetics of drug action without plasma concentrations, when and how? In M. Danhof, M. Karlsson, and R. J. Powell (eds.) Measurements and Kinetics of in vivo Drug Effects. LACDR, Leiden; 2002.

  28. 28.

    T. Goggin, P. Jacqmin, R. Gieschke, G. Pillai, E. Snoeck, P. Girard, and J. L. Steimer. Population PD(-PK) modeling and clinical trial simulation, characterizing schedule dependence of hematotoxicity and other Phase II trial design features for a new oral anticancer drug. PAGE 10 (2001) Abstr 180 [www.page-meeting.org/?abstract=180].

  29. 29.

    Romberg R., Olofsen E., Sarton E., Teppema L., Dahan A. (2003) Pharmacodynamic effect of morphine-6-glucuronide versus morphine on hypoxic and hypercapnic breathing in healthy volunteers. Anesthesiology 99:788–798

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Jordan P., Gieschke R. (2005) Explicit solutions for a class of indirect pharmacodynamic response models. Comput. Methods Programs Biomed. 77:91–97

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Jacqmin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jacqmin, P., Snoeck, E., van Schaick, E. et al. Modelling Response Time Profiles in the Absence of Drug Concentrations: Definition and Performance Evaluation of the K–PD Model. J Pharmacokinet Pharmacodyn 34, 57–85 (2007). https://doi.org/10.1007/s10928-006-9035-z

Download citation

Keywords

  • population pharmacokinetic–phamacodynamic
  • simulation
  • kinetics of drug action
  • dose-response-time-model
  • K–PD model