Skip to main content
Log in

Twitch Potentiation Influences the Time Course of Twitch Depression in Muscle Relaxant Studies: A Pharmacokinetic-Pharmacodynamic Explanation

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

The time course of twitch depression following neuromuscular blocking agent (NMBA) administration is influenced by the duration of control neuromuscular monitoring (twitch stabilization). The physiological mechanism for this interaction is not known. During twitch stabilization twitch response often increases to a plateau, this is known as twitch potentiation or the staircase phenomenon. Since twitch potentiation contributes to the observed twitch response it may also influence the time course of twitch depression following NMBA administration. Our objective was to estimate the degree that twitch potentiation influences the time course of twitch depression following NMBA administration under conditions typical for muscle relaxation studies. We used previousy described pharmacokinetic-pharmacodynamic (PK-PD) and twitch potentiation models to simulate twitch data. Simulations consisted of twitch stabilization followed by a NMBA bolus dose and subsequent onset and recovery from muscle relaxation. Twitch data were analyzed for onset and recovery characteristics and the results compared to clinical muscle relaxation studies in existing literature. We found that twitch potentiation likely plays a minor role in shortened onset time and increased duration of twitch depression observed with long periods of twitch stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Donati F. (1988). Onset of action of relaxants. Can. J. Anaesth. 35:S52–S58

    Article  PubMed  CAS  Google Scholar 

  2. Curran M.J., Donati F., Bevan D.R. (1987). Onset and recovery of atracurium and suxamethonium-induced neuromuscular blockade with simultaneous train-of-four and single twitch stimulation. Br. J. Anaesth. 59:989–994

    Article  PubMed  CAS  Google Scholar 

  3. McCoy E.P., Mirakhur R.K., Connolly F.M., Loan P.B. (1995). The influence of the duration of control stimulation on the onset and recovery of neuromuscular block. Anesth. Analg. 80:364–367

    Article  PubMed  CAS  Google Scholar 

  4. Kopman A.F., Kunmar S., Klewicka M.M., Neuman G.G. (2001). The staircase phenomenon. Anesthesiology 95:403–407

    Article  PubMed  CAS  Google Scholar 

  5. Krarup C. (1981). Enhancement and diminution of mechanical tension evoked by staircase and by tetanus in rat muscle. J. Physiol. 311:355–372

    PubMed  CAS  Google Scholar 

  6. Ritchie J.M., Wilkie D.R. (1955). The effect of previous stimulation on the active state of muscle. J. Physiol. 130:488–496

    PubMed  CAS  Google Scholar 

  7. Eleveld D.J., Proost J.H., De Haes A., Wierda J.M.K.H. (2005). Improving pharmacokinetic-pharmacodynamic models of muscle relaxants using potentiation modeling. J. Pharmacokinet. Pharmacodyn. 32:143–154

    Article  PubMed  Google Scholar 

  8. Eleveld D.J., Kopman A.F., Proost J.H., Wierda J.M.K.H. (2004). Model to describe the degree of twitch potentiation during neuromuscular monitoring. Br. J. Anaesth. 92:373–380

    Article  PubMed  CAS  Google Scholar 

  9. Sheiner L.B., Stanski D.R., Vozeh S., Miller R.D., Ham J. (1979). Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin. Pharmacol. Ther. 25:358–371

    PubMed  CAS  Google Scholar 

  10. Sweeney H.L., Bowman B.F., Stull J.T. (1993). Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function. Am. J. Physiol. Cell. Physiol. 264:C1085–C1095

    CAS  Google Scholar 

  11. Klug G.A., Botterman B.R., Stull J.T. (1982). The effect of low frequency stimulation on myosin light chain phosphorylation in skeletal muscle. J. Biol. Chem. 257:4688–4690

    PubMed  CAS  Google Scholar 

  12. S. Beal and L. Sheiner. NONMEM User’s Guide I: Users Basic Guide, Division of clinical Pharmacology, University of California, San Francisco (CA), (1989).

  13. Sheiner L. (1984). The population approach to pharmacokinetic data analysis: rationale and standard data analysis methods. Drug. Metab. Rev. 15:153–171

    PubMed  CAS  Google Scholar 

  14. Beal S. (1984). Population pharmacokinetic data and parameter estimation based on their first two statistical moments. Drug. Metab. Rev. 15:173–193

    CAS  Google Scholar 

  15. De Haes A., Proost J.H., Kuks J.B.M., Van den Tol D.C., Wierda J.M.K.H. (2002). Pharmacokinetic-pharmacodynamic modeling of rocuronium in myasthenic patients is improved by taking into account the number of unbound acetylcholine receptors. Anest. Analg. 95:588–596

    Article  Google Scholar 

  16. Viby-Mogensen J., Engbaek J., Eriksson L.I., Gramstad L., Jensen E., Jensen F.S., Koscielniak-Nielsen Z., Skovgaard L.T., Ostergaard D. (1996). Good clinical research practice (GCRP) in pharmacodynamic studies of neuromuscular blocking agents. Acta. Anaesth. Scand. 40:59–74

    Article  PubMed  CAS  Google Scholar 

  17. Girling K.J., Mahajan R.P. (1996). The effect of stabilization on the onset of neuromuscular block when assessed using accelerometry. Anesth. Analg. 82:1257–1260

    Article  PubMed  CAS  Google Scholar 

  18. Rédai I., England A.J., Feldman S.A. (1995). Time taken for stabilization of muscle twitch does not necessarily affect onset and offset times of atracurium. Br. J. Anaesth. 74: 474P

    Google Scholar 

  19. Lee G.C., Iyengar S., Szenohradszky J., Caldwell J.E., Wright P.M., Brown R., Lau M., Luks A., Fisher D.M. (1997). Improving the design of muscle relaxant studies. Stabilization period and tetanic recruitment. Anesthesiology 86:48–54

    Article  PubMed  CAS  Google Scholar 

  20. van Santen G., Fidler V., Wierda J.M.K.H. (1998). Stabilization and stability of twitch force during mechanomyography of the adductor pollicis muscle. J. Clin. Monit. Comput. 14:457–463

    Article  PubMed  Google Scholar 

  21. Mentre F., Gomeni R. (1995). A two-step iterative algorithm for estimation in nonlinear mixed-effect models with an evaluation in population pharmacokinetics. J. Biopharm. Stat. 5:141–158

    PubMed  CAS  Google Scholar 

  22. Bennett J.E., Wakefield J.C. (1996). A comparison of Bayesian population method with two methods as implemented in commercially available software. J. Pharmacokinet. 24:403–432

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas J. Eleveld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eleveld, D.J., Proost, J.H. & Wierda, J.M.K.H. Twitch Potentiation Influences the Time Course of Twitch Depression in Muscle Relaxant Studies: A Pharmacokinetic-Pharmacodynamic Explanation. J Pharmacokinet Pharmacodyn 33, 795–806 (2006). https://doi.org/10.1007/s10928-006-9034-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-006-9034-0

Keywords

Navigation