Model-Based Drug Development: The Road to Quantitative Pharmacology

  • Liping Zhang
  • Vikram Sinha
  • S. Thomas Forgue
  • Sophie Callies
  • Lan Ni
  • Richard Peck
  • Sandra R. B. AllerheiligenEmail author

High development costs and low success rates in bringing new medicines to the market demand more efficient and effective approaches. Identified by the FDA as a valuable prognostic tool for fulfilling such a demand, model-based drug development is a mathematical and statistical approach that constructs, validates, and utilizes disease models, drug exposure-response models, and pharmacometric models to facilitate drug development. Quantitative pharmacology is a discipline that learns and confirms the key characteristics of new molecular entities in a quantitative manner, with goal of providing explicit, reproducible, and predictive evidence for optimizing drug development plans and enabling critical decision making. Model-based drug development serves as an integral part of quantitative pharmacology. This work reviews the general concept, basic elements, and evolving role of model-based drug development in quantitative pharmacology. Two case studies are presented to illustrate how the model-based drug development approach can facilitate knowledge management and decision making during drug development. The case studies also highlight the organizational learning that comes through implementation of quantitative pharmacology as a discipline. Finally, the prospects of quantitative pharmacology as an emerging discipline are discussed. Advances in this discipline will require continued collaboration between academia, industry and regulatory agencies.


model-based drug development quantitative pharmacology disease model drug exposure-response model knowledge management decision making gemcitabine raloxifene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    US. Food and Drug Administration. Challenge and opportunity on the critical path to new medical products. (2004).Google Scholar
  2. 2.
    Gobburu J.V., Marroum P.J. (2001). Utilization of pharmacokinetic-pharmacodynamic modelling and simulation in regulatory decision-making. Clin. Pharmacokinet. 40:883–892PubMedCrossRefGoogle Scholar
  3. 3.
    Sheiner L.B., Steimer J.L. (2000). Pharmacokinetic/pharmacodynamic modeling in drug development. Ann. Rev. Pharmacol. Toxicol. 40:67–95CrossRefGoogle Scholar
  4. 4.
    Burman C.F., Hamrén B., Olsson P. (2005). Modelling and simulation to improve decision-making in clinical development. Pharm. Stat. 4:47–58CrossRefGoogle Scholar
  5. 5.
    Meibohm B., Derendorf H. (2002). Pharmacokinetic/Pharmacodynamic studies in drug development. J. Pharm. Sci. 91:18–31PubMedCrossRefGoogle Scholar
  6. 6.
    Minto C., Schnider T. (1998). Expanding clinical applications of population pharmacodynamic modelling. Br. J. Clin. Pharmacol. 46:321–333PubMedCrossRefGoogle Scholar
  7. 7.
    Lesko L.J., Rowland M., Peck C.C., Blaschke T.F. (2000). Optimizing the science of drug development: opportunities for better candidate selection and accelerated evaluation in humans. Pharm. Res. 17:1335–1344PubMedCrossRefGoogle Scholar
  8. 8.
    Peck C.C., Barr W.H., Benet L.Z., Collins J., Desjardins R.E., Furst D.E., Harter J.G., Levy G., Ludden T., Rodman J.H. (1994). Opportunities for integration of pharmacokinetics, pharmacodynamics, and toxicokinetics in rational drug development. J. Clin. Pharmacol. 34:111–119PubMedGoogle Scholar
  9. 9.
    Balant L.P., Gex-Fabry M. (2000). Modelling during drug development. Eur. J. Pharm. Biopharm. 50:13–26PubMedCrossRefGoogle Scholar
  10. 10.
    Noble D., Levin K., Scott W. (1999). Biological simulations in drug discovery. Drug Discov. Today 4:10–16PubMedCrossRefGoogle Scholar
  11. 11.
    D. R. Stanski. Model-based drug development: a critical path opportunity. (2004).Google Scholar
  12. 12.
    Chaikin P., Rhodes G.R., Bruno R., Rohatagi S., Natarajan C. (2000). Pharmacokinetics/pharmacodynamics in drug development: an industrial perspective. J. Clin. Pharmacol. 40:1428–1438PubMedGoogle Scholar
  13. 13.
    Mandema J.W., Hermann D., Wang W., Sheiner T., Milad M., Bakker-Arkewa R., Hartman D. (2005). Model-based development of gemcabene, a new lipid altering agent. The AAPS Journal 7:E513–E522PubMedCrossRefGoogle Scholar
  14. 14.
    Blesch K.S., Gieschke R., Tsukamoto Y., Reigner B.G., Burger H.U., Steimer J.L. (2003). Clinical pharmacokinetic/pharmacodynamic and physiologically based pharmacokinetic modeling in new drug development: the capecitabine experience. Invest. New Drugs 21:195–223PubMedCrossRefGoogle Scholar
  15. 15.
    Karlsson M.O., Anehall T., Friberg L.E., Henningsson A., Kloft C., Sandstrom M., Xie R. (2005). Pharmacokinetic/pharmacodynamic modelling in oncological drug development. Basic Clin. Pharmacol. Toxicol. 96:206–211PubMedCrossRefGoogle Scholar
  16. 16.
    Panetta J.C., Iacono L.C., Adamson P.C., Stewart C.F. (2003). The importance of pharmacokinetic limited sampling models for childhood cancer drug development. Clin. Cancer Res. 9:5068–5077PubMedGoogle Scholar
  17. 17.
    Andes D. (2003). Pharmacokinetics and pharmacodynamics in the development of antifungal compounds. Curr. Opin. Investig. Drugs 4:991–998PubMedGoogle Scholar
  18. 18.
    Theil F.P., Guentert T.W., Haddad S., Poulin P. (2003). Utility of physiologically based pharmacokinetic models to drug development and rational drug discovery candidate selection. Toxicol. Lett. 18:29–49CrossRefGoogle Scholar
  19. 19.
    Saha A.K., Mazumdar J., Kohles S.S. (2004). Prediction of growth factor effects on engineered cartilage composition using deterministic and stochastic modeling. Ann. Biomed. Eng. 32:871–879PubMedCrossRefGoogle Scholar
  20. 20.
    Bangs A. (2005). Predictive biosimulation and virtual patients in pharmaceutical R and D. Stud. Health. Technol. Inform. 111:37–42PubMedGoogle Scholar
  21. 21.
    Parrott N., Jones H., Paquereau N., Lave T. (2005). Application of full physiological models for pharmaceutical drug candidate selection and extrapolation of pharmacokinetics to man. Basic Clin. Pharmacol. Toxicol. 96:193–199PubMedCrossRefGoogle Scholar
  22. 22.
    Sheiner L.B. (1997). Learning vs. confirming in clinical drug development. Clin. Pharmacol. Ther. 61:275–291PubMedCrossRefGoogle Scholar
  23. 23.
    Vicini P., Gastonguay M.R., Foster D.M. (2002). Model-based approaches to biomarker discovery and evaluation: a multidisciplinary integrated review. Crit. Rev. Biomed. Eng. 30:379–418PubMedCrossRefGoogle Scholar
  24. 24.
    N. H. G. Holford, M. Hale, H. C. Ko, J.-L. Steimer, L. B. Sheiner, C. C. Peck. Contributors: P. Bonate, W. R. Gillespie, T. Ludden, D. B. Rubin, D. Stanski (eds). Simulation in drug development: good practice. (1999).Google Scholar
  25. 25.
    Kimko H.C., Duffell S.B. (2002). Simulation for Designing Clinical Trials: A Pharmacokinetic–Pharmacodynamic Modeling Perspective. Drugs and the Pharmaceutical Sciences, Vol. 127, Marcel Dekker, New YorkGoogle Scholar
  26. 26.
    Pozniak A., Nelson M.R. (1996). Against the proposition: all patients with advanced HIV disease should be offered rifabutin prophylaxis. Genitourin. Med. 72:269–271PubMedGoogle Scholar
  27. 27.
    Post T.M., Freijer J.I., de Jongh J., Danhof M. (2005). Disease system analysis: basic disease progression models in degenerative disease. Pharm. Res. 22:1038–1049PubMedCrossRefGoogle Scholar
  28. 28.
    Minto C., Schnider T. (1998). Expanding clinical applications of population pharmacodynamic modelling. Br. J. Clin. Pharmacol. 46(3):21–333Google Scholar
  29. 29.
    S. Allerheiligen. Quantitative pharmacology: utilizing PK/PD in drug discovery and development. Population Approach Group in Europe 14th Annual Meeting, Pamplona, Spain (2005).Google Scholar
  30. 30.
    J. Y. Chien, S. Friedrich, M. A. Heathman, D. P. de Alwis, and V. Sinha. Pharmacokinetics/pharmacodynamics and the stages of drug development: role of modeling and simulation Pharm Res, in press.Google Scholar
  31. 31.
    Zinzani P.L., Baliva G., Magagnoli M., Bendandi M., Modugno G., Gherlinzoni F., Orcioni G.F., Ascani S., Simoni R., Pileri S.A., Tura S. (2000). Gemcitabine treatment in pretreated cutaneous T-cell lymphoma: experience in 44 patients. J. Clin. Oncol. 18:2603–2606PubMedGoogle Scholar
  32. 32.
    Grunewald R., Kantarjian H., Du M., Faucher K., Tarassoff P., Plunkett W. (1992). Gemcitabine in leukemia: a phase I clinical, plasma, and cellular pharmacology study. J. Clin. Oncol. 10:406–413PubMedGoogle Scholar
  33. 33.
    US. Food and Drug Administration Oncology Tools Product Label Details for Prescribing gemcitabine (1998).Google Scholar
  34. 34.
    Eckel F., Schmelz R., Erdmann J., Mayr M., Lersch C. (2003). Phase II trial of a 24-hour infusion of gemcitabine in previously untreated patients with advanced pancreatic adenocarcinoma. Cancer Invest. 21:690–694PubMedCrossRefGoogle Scholar
  35. 35.
    Beal S.L., Sheiner L.B. NONMEM Users Guides. Globomax Inc., Maryland, 1989–1998.Google Scholar
  36. 36.
    Wahlby U., Jonsson E.N., Karlsson M.O. (2002). Comparison of stepwise covariate model building strategies in population pharmacokinetic-pharmacodynamic analysis. AAPS Pharm. Sci. 4:E27CrossRefGoogle Scholar
  37. 37.
    Kuenen B.C., Rosen L., Smit E.F., Parson M.R., Levi M., Ruijter R., Huisman H., Kedde M.A., Noordhuis P., van der Vijgh W.J., Peters G.J., Cropp G.F., Scigalla P., Hoekman K., Pinedo H.M., Giaccone G. (2002). Dose-finding and pharmacokinetic study of cisplatin, gemcitabine, and SU5416 in patients with solid tumors. J. Clin. Oncol. 20:1657–1667PubMedCrossRefGoogle Scholar
  38. 38.
    Gandhi V., Plunkett W., Du M., Ayres M., Estey E.H. (2002). Prolonged infusion of gemcitabine: clinical and pharmacodynamic studies during a phase I trial in relapsed acute myelogenous leukemia. J. Clin. Oncol. 20:665–673PubMedCrossRefGoogle Scholar
  39. 39.
    Grunewald R., Abbruzzese J.L., Tarassoff P., Plunkett W. (1991). Saturation of 2′,2′-difluorodeoxycytidine 5′-triphosphate accumulation by mononuclear cells during a phase I trial of gemcitabine. Cancer Chemother. Pharmacol. 27:258–262PubMedCrossRefGoogle Scholar
  40. 40.
    van Moorsel C.J., Kroep J.R., Pinedo H.M., Veerman G., Voorn D.A., Postmus P.E., Vermorken J.B., van Groeningen C.J., van der Vijgh W.J., Peters G.J. (1999). Pharmacokinetic schedule finding study of the combination of gemcitabine and cisplatin in patients with solid tumors. Ann. Oncol. 10:441–448PubMedCrossRefGoogle Scholar
  41. 41.
    M. Heathman and S. Allerheiligen. Visualization case study: population pharmacokinetics of clinical trial data. In Visualization: Using computer graphics to explore data and present information, Wiley, New York, 1995, pp. 155–158.Google Scholar
  42. 42.
    Jonsson E.N., Karlsson M.O. (1999). Xpose–an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput. Methods Programs Biomed 58:51–64PubMedCrossRefGoogle Scholar
  43. 43.
    Delmas P.D., Ensrud K.E., Adachi J.D., Harper K.D., Sarkar S., Gennari C., Reginster J.Y., Pols H.A., Recker R.R., Harris S.T., Wu W., Genant H.K., Black D.M., Eastell R. (2002). Efficacy of raloxifene on vertebral fracture risk reduction in postmenopausal women with osteoporosis: four-year results from a randomized clinical trial. J. Clin. Endocrinol. Metab. 87:3609–3617PubMedCrossRefGoogle Scholar
  44. 44.
    Sarkar S., Mitlak B.H., Wong M., Stock J.L., Black D.M., Harper K.D. (2002). Relationships between bone mineral density and incident vertebral fracture risk with raloxifene therapy. J Bone Miner. Res. 17:1–10PubMedCrossRefGoogle Scholar
  45. 45.
    Bjarnason N.H., Sarkar S., Duong T., Mitlak B., Delmas P.D., Christiansen C. (2001). Six and twelve month changes in bone turnover are related to reduction in vertebral fracture risk during 3 years of raloxifene treatment in postmenopausal osteoporosis. Osteoporos. Int. 12:922–930PubMedCrossRefGoogle Scholar
  46. 46.
    Chan P.L.S., Holford N.H.G. (2001). Drug Treatment effects on disease progression. Ann. Rev. Pharmacol. Tox. 41:625–659CrossRefGoogle Scholar
  47. 47.
    de Boor C. (1978). A Practical Guide to Splines. Springer, New YorkGoogle Scholar
  48. 48.
    Jusko W.J., Ko H.C. (1994). Physiologic indirect response models characterize diverse types of pharmacodynamic effects. Clin. Pharmacol. Ther. 56:406–419PubMedCrossRefGoogle Scholar
  49. 49.
    Krzyzanski W., Jusko W.J. (1998). Mathematical formalism and characteristics of four basic models of indirect pharmacodynamic responses for drug infusions. J. Pharmacokinet. Biopharm. 26: 385–408PubMedCrossRefGoogle Scholar
  50. 50.
    N. H. G. Holford, D. H. Mould, and C. Peck. Disease progress models In Principles of Clinical Pharmacology, A. J. Atkinson, et al. (ed), Academic Press, San Diego, 2001.Google Scholar
  51. 51.
    Yano Y., Beal S.L., Sheiner L.B. (2001). Evaluating pharmacokinetic/ pharmacodynamic models using the posterior predictive check. J. Pharmacokinet. Pharmacodyn 28:171–192PubMedCrossRefGoogle Scholar
  52. 52.
    AAMC and US. Food and Drug Administration. Drug Development Science: Obstacles and Opportunities for Collaboration Among Academia, Industry and Government. prd_id=135&prv_id=157. (2005).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Liping Zhang
    • 2
  • Vikram Sinha
    • 1
  • S. Thomas Forgue
    • 1
  • Sophie Callies
    • 1
  • Lan Ni
    • 1
  • Richard Peck
    • 1
  • Sandra R. B. Allerheiligen
    • 1
    Email author
  1. 1.Drug Disposition and Global PK/PD, Lilly Research LaboratoriesEli Lilly & Co., Lilly Corporate CenterIndianapolisUSA
  2. 2.Bristol Myers-SquibbPrincetonNew Jersey

Personalised recommendations