Skip to main content

Kyphosed Seated Postures: Extending Concepts of Postural Health Beyond the Office

Abstract

Introduction The harmful effects of sustained sitting and the health of the spine are well documented. The focus of much of this investigation has been sedentary occupations. However, how people sit during leisure hours can impact on the health of the spine both in and out of working hours. Methods A literature search was conducted using Amed, Cinahl and OVID Medline databases. Papers published between 1985 and 2007 were selected for review. These included epidemiological and experimental studies that explored the relationships between seated postures and health of the lumbar spine. Until recently there was confusion in the scientific literature as to which seated postures were least harmful: lordosed or kyphosed. This article reviews and analyses these conflicts in relation to leisure sitting. Results Analysis of the literature demonstrates that kyphosed seated postures when sustained are more harmful to the health of the lumbar spine than lordosed seated postures. There is a misconception amongst designers and users of leisure seating that kyphosed relaxed postures are comfortable and that comfort equates with health. It is argued that sustained kyphosed postures are insidiously harmful to the spine in that they may contribute to disc degeneration in the absence of pain. Sustained kyphosed postures also adversely affect spinal ligaments, muscles and joints and lead to neuromuscular and cumulative trauma disorders and loss of spinal stability. Conclusion Recent research demonstrates that postures popularly assumed in recreational or leisure seating lead to cumulative damage to soft tissues of the spine. These effects may still be present at the commencement of the following work day. In the prevention of work disability caused by sustained sitting, health professionals must consider the impact of leisure seating design and recreational sitting behaviour.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. 1.

    This review does not consider the effect of seated posture on those with spondylolisthesis or severe degenerative changes whose spines for reasons of anatomical configuration prefer flexion.

References

  1. 1.

    Vos GA, Congleton JJ, Moore AA, Amendola LR. Postural versus chair design impacts upon interface pressure. Appl Ergon 2006;37(5):619–28.

    PubMed  Article  Google Scholar 

  2. 2.

    Treaster D, Marras WS. Measurement of seat pressure distributions. Hum Factors 1987;29:563–75.

    Google Scholar 

  3. 3.

    Australian Bureau of Statistics. Arts and culture in Australia: a statistical overview. Time and use survey, 4172.0. Sydney: ABS 1997; 2007 reissue. Available from: http://www.abs.gov.au

  4. 4.

    Khalid HM. Embracing diversity in user needs for affective design. Appl Ergon 2006;37:409–18.

    PubMed  Article  Google Scholar 

  5. 5.

    Saarinen A. Eero Saarinen on his work 1947–1962. New Haven: Yale University Press; 1968.

    Google Scholar 

  6. 6.

    Marcus GH. Functionalist design: an ongoing history. New York: Prestel-Verlag; 1995.

    Google Scholar 

  7. 7.

    Wolfe T. From Bauhaus to our house. London: Cape; 1982.

    Google Scholar 

  8. 8.

    Wright FLW. The natural house. London: Sir Isaac Pitman and Sons Ltd; 1971.

    Google Scholar 

  9. 9.

    Zographos N. Form first, pleasing and non-aggressive shapes. In: Prete B, editor. Chair, the current state of the art, with the who, the why, and the what of it. New York: Thomas Y. Crowell; 1978. p. 66–77.

    Google Scholar 

  10. 10.

    Cranz G. Rethinking culture, body and design. New York: Norton and Co.; 1998.

    Google Scholar 

  11. 11.

    Williams PC. Lesions of the lumbosacral spine. The diagnosis, conservative management of lesions of the lumbosacral spine. In: Thomson JE, editor. Lectures on regional orthopaedic surgery and fundamental orthopaedic problems. No. 11. Selected from the instructional courses of the fourteenth annual assembly, Chicago, 1947. Ann Arbor: JW Edwards; 1948. p. 103–16.

    Google Scholar 

  12. 12.

    Williams PC. Low back pain and neck pain. Causes and conservative treatment. Springfield: Charles C. Thomas; 1974.

    Google Scholar 

  13. 13.

    Fahrni WH. Backache relieved. The new concepts of posture. Springfield: Charles C. Thomas; 1966.

    Google Scholar 

  14. 14.

    Fahrni WH. Conservative treatment of lumbar disc degeneration: our primary responsibility. Orthop Clin North Am 1975;6:93–103.

    PubMed  CAS  Google Scholar 

  15. 15.

    Fahrni WH. Backache: assessment and treatment. Vancouver: Musqueam Publishers; 1976.

    Google Scholar 

  16. 16.

    Cailliet R. Low back pain syndrome, 3rd ed. Philadelphia: F. A. Davis and Co; 1981.

    Google Scholar 

  17. 17.

    Cailliet R. Low back pain syndrome. 4th ed. Philadelphia: F. A. Davis and Co; 1988.

    Google Scholar 

  18. 18.

    Adams MA, Hutton WC. The effect of posture on the role of the apophyseal joints in resisting intervertebral compressive forces. J Bone Joint Surg Br 1980;62B:358–62.

    Google Scholar 

  19. 19.

    Adams MA, Hutton WC. The effect of posture on the fluid content of lumbar intervertebral discs. Spine 1983;8:665–71.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Adams MA, Hutton WC. The effect of posture on the lumbar spine. J Bone Joint Surg Br 1985;67B:625–29.

    Google Scholar 

  21. 21.

    Adams MA, McNally DS, Chinn H, Dolan P. Posture and the compressive strength of the lumbar spine. Clin Biomech 1994;9:5–14.

    Article  Google Scholar 

  22. 22.

    Adams MA, McNally DS, Dolan P. Stress distributions inside intervertebral discs: the effects of age, degeneration. J Bone Joint Surg Br 1996;78B:965–72.

    Article  Google Scholar 

  23. 23.

    Keegan JJ. Alteration of the lumbar curve related to posture, seating. J Bone Joint Surg Am 1953;35-A:589–604.

    PubMed  CAS  Google Scholar 

  24. 24.

    Mandal AC. Work-chair with tilting seat. Ergonomics 1976;19:157–64.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Mandal AC. The seated man (Homo Sedens). The seated work position: theory and practice. Appl Ergon 1981;12:19–26.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Mandal AC. The seated man. Copenhagen: Dafnia Publications; 1974.

  27. 27.

    Mandal AC. An investigation of the lumbar flexion of office workers. In: Corlett N, Wilson J, Manenica I, editors. Proceedings of the first international occupational ergonomics symposium; Zadar: Yugoslavia. London: Taylor & Francis; 1985. p. 345–54.

  28. 28.

    McKenzie RA. The Lumbar spine: mechanical diagnosis and therapy. Waikanae: Spinal Publications; 1981.

    Google Scholar 

  29. 29.

    McGill S. Estimation of force and extensor moment contributions of the disc and ligaments at L4-L5. Spine 1988;13:1395–401.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    McGill S. Kinetic potential of the trunk musculature about three orthogonal orthopaedic axes in extreme postures. Spine 1991;16:809–15.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    McGill S. The biomechanics of low back injury: implications on current practice in industry and the clinic. J Biomech 1997;30:465–75.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Solomonow M, Zhou BE, Harris M, Lu Y, Baratta RV. The ligamento-muscular stabilising system of the spine. Spine 1998;23:2552–62.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Solomonow M, Zhou BE, Baratta RV, Lu Y, Harris M. Biomechanics of increased exposure to lumbar injury caused by cyclic loading: part 1. Loss of reflexive muscular stabilization. Spine 1999;24:2426–34.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Nachemson AL. The lumbar spine: an orthopaedic challenge. Spine 1976;1:59–69.

    Article  Google Scholar 

  35. 35.

    Sato K, Kikuchi S, Yonezawa T. In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine 1999;24:2468–74.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Wilke H-J, Neef P, Caimi M, Hoogland T, Claes LE. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 1999;24:755–62.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Andersson BJG, Örtengren R. Myoelectric back muscle activity during sitting. Scan J Rehabil Med 1974;3(Suppl):73–90.

    CAS  Google Scholar 

  38. 38.

    Adams MA. Spine update. Mechanical testing of the spine. An appraisal of methodology, results and conclusions. Spine 1995;20:2151–6.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Andersson BJG, Örtengren R. Lumbar disc pressure and myoelectric back muscle activity during sitting: 11. Studies on an office chair. Scand J Rehabil Med 1974;6:115–21.

    PubMed  CAS  Google Scholar 

  40. 40.

    Adams MA, Green TP, Dolan P. The strength in anterior bending of lumbar intervertebral discs. Spine 1994;19:2197–203.

    PubMed  CAS  Google Scholar 

  41. 41.

    Hedman TP, Fernie GR. Mechanical response of the lumbar spine to seated postural loads. Spine 1997;22:734–43.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Horst M, Brinkmann P. Measurement of the distribution of axial stress on the endplate of the vertebral body. Spine 1981;6:217–32.

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    McNally DS, Adams MA. Inter-vertebral disc mechanics as revealed by stress profilometry. Spine 1992;17:66–73.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Adams MA, Dolan P. The combined function of spine, pelvis and legs when lifting with a straight back. In: Vleeming A, Mooney V, Dorman T, Snijders C, Stoeckart R, editors. Movement, stability and low back pain: the essential role of the pelvis. New York: Churchill Livingstone; 1997.

    Google Scholar 

  45. 45.

    Lotz JC, Colliou OK, Chin JR, Duncan NA, Liebenberg E. Compression-induced degeneration of the intervertebral disc: an in vivo mouse model and finite-element study. Spine 1998;23:2493–506.

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Lotz JC, Chin JR. Intervertebral disc cell death is dependent on the magnitude and duration of spinal loading. Spine 2000;25:1477–83.

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Urban JP. Point of view. Spine 2000;25:1477–83.

    Article  Google Scholar 

  48. 48.

    Ariga K, Yonenobu K, Nakase T, Hosono N, Okuda S, Meng W, et al. Mechanical stress-induced apoptosis of endplate chondrocytes in organ-cultured mouse intervertebral discs: an ex vivo study. Spine 2003;28:1528–33.

    PubMed  Article  Google Scholar 

  49. 49.

    Adams M, Freeman B, Morrison H, Nelson I, Dolan P. Mechanical irritation of intervertebral disc degeneration. Spine 2000;25:1625–36.

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Bogduk N. Clinical anatomy of the lumbar spine and sacrum. Melbourne: Churchill Livingstone; 1997.

    Google Scholar 

  51. 51.

    Holm S. Pathophysiology of disc degeneration. Acta Orthop Scand 1993;251(Suppl):13–5.

    CAS  Google Scholar 

  52. 52.

    Ohshima H, Urban JPG, Bergel DH. Effects of static load on matrix synthesis rates in the intervertebral disc measured in vitro by a new perfusion technique. J Orthop Res 1995;13:22–7.

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    McNally DS, Shackleford IM, Goodship AE, Mulholland RC. In vivo stress measurements can predict pain on discography. Spine 1996;21:2580–7.

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Adams MA, McNally DS, Wagstaff J, Goodship AE. Abnormal stress concentrations in lumbar intervertebral discs following damage to the vertebral body: a cause of disc failure. Eur Spine J 1993;1:214–21.

    Article  CAS  PubMed  Google Scholar 

  55. 55.

    Adams MA, McMillan DW, Green TP, Dolan P. Sustained loading generates stress concentrations in lumbar intervertebral discs. Spine 1996;21:434–8.

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Schwarzer AC, Aprill CN, Derby R, Fortin J, Kine G, Bogduk N. The prevalence and clinical features of internal disc disruption in patients with chronic low back pain. Spine 1995;20:1878–83.

    PubMed  CAS  Google Scholar 

  57. 57.

    Wetzel FT, Donelson R. The role of repeated end-range/pain response assessment in the management of symptomatic lumbar discs. Spine J 2003;3:146–54.

    PubMed  Article  Google Scholar 

  58. 58.

    Courville A, Sbricolli P, Zhou BH, Solomonow M, Lu Y, Burger E. Short rest periods after static lumbar flexion are a risk factor for cumulative low back disorder. J Electromyogr Kinesiol 2005;15:37–52.

    PubMed  Article  Google Scholar 

  59. 59.

    Ekstrom L, Kaigle A, Holt E, Holm S, Rostgat M, Hansson T. Intervertebral disc response to cyclic loading. Proc Inst Mech Eng 1996;210:249–58.

    CAS  Google Scholar 

  60. 60.

    McGill SM, Brown S. Creep response of the lumbar spine to prolonged full flexion. Clin Biomech 1992;7:43–6.

    Article  Google Scholar 

  61. 61.

    Magnusson ML, Pope MH, Hansson T. Does hyperextension have an unloading effect on the intervertebral disc? Scand J Rehabil Med 1995;27:5–9.

    PubMed  CAS  Google Scholar 

  62. 62.

    McMillan DW, Garbutt G, Adams MA. Effect of sustained loading on the water content of intervertebral discs: implications for disc metabolism. Ann Rheum Dis 1996;55:880–7.

    PubMed  CAS  Google Scholar 

  63. 63.

    Althoff P, Brinckmann W, Frobin J, Sandover, Burton K. An improved method of stature measurement for quantitative determination of spinal loading. Spine 1992;17:682–93.

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Leivseth G, Drerup B. Spinal shrinkage during work in a sitting posture compared to work in a standing posture. Clin Biomech 1997;12:409–18.

    Article  Google Scholar 

  65. 65.

    MacDonald DA, Moseley L, Hodges PW. The lumbar multifidus: does the evidence support clinical beliefs? Man Ther 2006;11:254–63.

    PubMed  Article  Google Scholar 

  66. 66.

    Beach T, Parkinson R, Stothart J, Callaghan J. Effects of prolonged sitting on the passive flexion stiffness of the in vivo lumbar spine. Spine J 2005;5:145–54.

    PubMed  Article  Google Scholar 

  67. 67.

    Handa T, Ishihara H, Ohshima H, Osada R, Tsuji H, Obata K. Effects of hydrostatic pressure on matrix synthesis and matrix metalloproteinase production in the human lumbar intervertebral disc. Spine 1997;22:1085–91.

    PubMed  Article  CAS  Google Scholar 

  68. 68.

    Williams M, Solomonow M, Zhou B-H, Baratta RV, Harris M. Multifidus spasm elicited by prolonged lumbar flexion. Spine 2000;25:2916–24.

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    Gunning JL, Callaghan JP, McGill SM. Spinal posture and prior loading history modulate compressive strength and type of failure in the spine: a biomechanical study using a porcine cervical spine model. Clin Biomech 2001;16:471–80.

    Article  CAS  Google Scholar 

  70. 70.

    Solomonow M, Baratta RV, Banks A, Freudenberger C, Zhou B-H. Flexion-relaxation response to static lumbar flexion in males and females. Clin Biomech 2003;18:273–9.

    Article  Google Scholar 

  71. 71.

    Solomonow M, Zhou B-H, Baratta RV, Zhu M, Lu Y. Neuromuscular disorders associated with static lumbar flexion: a feline model. J Electromyogr Kinesiol 2002;12:81–90.

    PubMed  Article  CAS  Google Scholar 

  72. 72.

    Solomonow M, Baratta RV, Zhou B-H, Burger E, Zieske A, Gedalia A. Muscular dysfunction elicited by creep of lumbar viscoelastic tissues. J Electromyogr Kinesiol 2003;13:381–93.

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    LaBry R, Sbriccoli P, Zhou B-H, Solomonow M. Longer static flexion duration elicits a neuromuscular disorder in the lumbar spine. J Appl Physiol 2004;96:2005–15.

    PubMed  Article  Google Scholar 

  74. 74.

    Solomonow M. Ligaments: a source of work-related musculoskeletal disorders. J Electromyogr Kinesiol 2004;14:49–60.

    PubMed  Article  CAS  Google Scholar 

  75. 75.

    Solomonow M, Hatipkarasulu S, Zhou B-H, Baratta RV, Aghazadeh F. Biomechanics and electromyography of a common idiopathic low back disorder. Spine 2003;28:1235–48.

    PubMed  Article  Google Scholar 

  76. 76.

    Solomonow M, Zhou B-H, Baratta RV, Burger E. Biomechanics and electromyography of a cumulative lumbar disorder: response to static flexion. Clin Biomech 2003;18:890–8.

    Article  CAS  Google Scholar 

  77. 77.

    Jackson M. Solomonow M, Zhou B-H, Baratta RV, Harris M. Multifidus EMG and tension relaxation recovery after prolonged static lumbar flexion. Spine 2001;26:715–23.

    PubMed  Article  CAS  Google Scholar 

  78. 78.

    Nordin M, Frankel VH. Basic biomechanics of the musculoskeletal system. Philadelphia: Lippincott Williams & Wilkins; 2001.

    Google Scholar 

  79. 79.

    Dolan KJ, Green A. Lumbar spine reposition sense: the effect of a ‘slouched’ posture. Man Ther 2006;11:202–7.

    PubMed  Article  Google Scholar 

  80. 80.

    Solomonow M, Eversull E, Zhou B-H, Baratta RV, Zhu P. Neuromuscular neutral zones associated with viscoelastic hysteresis during cyclic lumbar flexion. Spine 2001;26:314–24.

    Article  Google Scholar 

  81. 81.

    Hodges P, Richardson CA. Contraction of the abdominal muscles associated with movement of the lower limb. Phys Ther 1997;77:132–42.

    PubMed  CAS  Google Scholar 

  82. 82.

    Kaigle A, Holm S, Hansson T. Experimental instability in the lumbar spine. Spine 1995;20:421–30.

    PubMed  Article  CAS  Google Scholar 

  83. 83.

    Moseley LG, Hodges P, Gandevia SC. Deep and superficial fibers of the lumbar multifidus muscle are differentially active during voluntary arm movements. Spine 2002;27:E29–36.

    PubMed  Article  Google Scholar 

  84. 84.

    Richardson CA, Jull GA. Muscle control–pain control. What exercises would you prescribe? Man Ther 1995;1:2–10.

    PubMed  Article  CAS  Google Scholar 

  85. 85.

    Sbriccoli P, Yousuf K, Kupershtein I, Solomonow M, Zhou B-H, Zhu M, Lu Y. Static load repetition is a risk factor in the development of lumbar cumulative musculoskeletal disorder. Spine 2004;29:2643–53.

    PubMed  Article  Google Scholar 

  86. 86.

    McGill S, Kippers V. Transfers of loads between lumbar tissue during the flexion-relaxation phenomena. Spine 1994;19:2190–6.

    PubMed  CAS  Article  Google Scholar 

  87. 87.

    Callaghan JP, McGill SM. Low back joint loading and kinematics during standing and unsupported sitting. Ergonomics 2001;44:280–94.

    PubMed  Article  CAS  Google Scholar 

  88. 88.

    Yang KH, King AI. Mechanism of facet load transmission as a hypothesis for low-back pain. Spine 1984;9:557–65.

    PubMed  Article  CAS  Google Scholar 

  89. 89.

    Butler D, Trafimow JH, Andersson GBJ, McNeil TW, Huckman MS. Discs degenerate before facets. Spine 1990;15:111–3.

    PubMed  Article  CAS  Google Scholar 

  90. 90.

    Moore RJ, Crotti YN, Osti OL, Fraser RD, Vernon-Roberts B. Osteoarthrosis of the facet joints resulting from annular rim lesions in sheep lumbar discs. Spine 1999;24:519–25.

    PubMed  Article  CAS  Google Scholar 

  91. 91.

    Dunlop RB, Adams MA, Hutton WC. Disc space narrowing, the lumbar facet joints. J Bone Joint Surg Br 1984;66-B:706–10.

    Google Scholar 

  92. 92.

    Swanepoel MW, Adams LM, Smeathers JE. Human lumbar apophyseal joint damage and intervertebral disc degeneration. Ann Rheum Dis 1995;54:182–8.

    PubMed  CAS  Article  Google Scholar 

  93. 93.

    El-Bohy AA, Yang K-H, King I. Experimental verification of facet load transmission by direct measurement of facet lamina contact pressure. J Biomech 1989;22:931–41.

    PubMed  Article  CAS  Google Scholar 

  94. 94.

    Adams MA, May S, Freeman BJC, Morrison HP, Dolan P. Effects of backward bending on lumbar intervertebral discs: relevance to physical therapy treatments for low back pain. Spine 2000;25:431–48.

    PubMed  Article  CAS  Google Scholar 

  95. 95.

    Snook SH, Webster BS, McGorry RW, Fogleman MT, McGann KB. The reduction of chronic nonspecific low back pain through the control of early morning lumbar flexion: a randomized controlled trial. Spine 1998;23:2601–7.

    PubMed  Article  CAS  Google Scholar 

  96. 96.

    Snook SH, Webster BS, McGorry RW. The reduction of chronic nonspecific low back pain through the control of early morning lumbar flexion: 3-year follow-up. J Occup Rehabil 2002;12:13–9.

    PubMed  Article  Google Scholar 

  97. 97.

    Malko JA, Hutton WC, Fajman WA. An in vivo MRI study of the changes in volume (and fluid content) of the lumbar intervertebral disc after overnight bed rest and during an 8-hour walking protocol. J Spinal Disord Tech 2002;15:157–63.

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jennifer Pynt.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pynt, J., Mackey, M.G. & Higgs, J. Kyphosed Seated Postures: Extending Concepts of Postural Health Beyond the Office. J Occup Rehabil 18, 35–45 (2008). https://doi.org/10.1007/s10926-008-9123-6

Download citation

Keywords

  • Posture
  • Lumbar vertebrae
  • Lordosis
  • Kyphosis
  • Sustained flexed sitting
  • Leisure seating