Skip to main content
Log in

Silica Functionalized Almond Gum Derivatives for Integrated Flocculation Cycles for Natural and Synthetic Water Systems

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Natural gum-based flocculants are prevalent for water treatment, still their efficiency can be improved by the incorporation of eco-friendly inorganic fillers. Such inorganic–organic-based hybrid materials need to be explored more in natural and synthetic water systems for their proof of concept and related applications. Hybrid almond gum (Amg) grafted polyacrylamide/silica-based composite (Amg-g-PAM/SiO2) was synthesized and assessed as a flocculant for natural and synthetic water systems. The synthesis was characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), Energy dispersive X-ray spectroscopy (EDS), Thermogravimetric analysis (TGA), Differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS) to study the chemical, structural, thermal, and surface properties. The synthesized grades of Amg-g-PAM and Amg-g-PAM/SiO2 were tested for their flocculation performance in kaolin, iron ore and MWCNT suspensions. pH and temperature variations, zeta potential measurements were studied on neutral kaolin suspension. The best flocculation efficiency was observed to be 98%, 96%, 95% and 92% in MWCNT, kaolin, iron ore suspensions and river water respectively at pH 4 and 25 °C. Overall, Amg-g-PAM/SiO2 flocculant possesses unique characteristics of conventional branched graft copolymers which increases easy approachability towards suspended particles while its inorganic counterpart enhances adsorption. Thus, this hybrid flocculant is better than any of its individual inorganic or organic counterparts in terms of flocculation efficacy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Chethana M, Sorokhaibam LG, Bhandari VM et al (2016) Green approach to dye wastewater treatment using biocoagulants. ACS Sustain Chem Eng 4:2495–2507. https://doi.org/10.1021/acssuschemeng.5b01553

    Article  CAS  Google Scholar 

  2. Gebru KA, Das C (2017) Removal of chromium(VI) ions from aqueous solutions using amine-impregnated TiO2 nanoparticles modified cellulose acetate membranes. Chemosphere 191:673–684. https://doi.org/10.1016/j.chemosphere.2017.10.107

    Article  CAS  PubMed  Google Scholar 

  3. Moeinzadeh R, Ghadami A, Ghadam J et al (2019) Synthesis of nanocomposite membrane incorporated with amino-functionalized nanocrystalline cellulose for refinery wastewater treatment. Carbohydr Polym 225:15212. https://doi.org/10.1016/j.carbpol.2019.115212

    Article  CAS  Google Scholar 

  4. Ngo TS, Tracey CT, Navrotskaya AG et al (2023) Reusable carbon dot/chitin nanocrystal hybrid sorbent for the selective detection and removal of Cr(VI) and Co(II) ions from wastewater. Carbohydr Polym 304:120471. https://doi.org/10.1016/J.CARBPOL.2022.120471

    Article  CAS  PubMed  Google Scholar 

  5. Peng H, Zhong S, Lin Q et al (2016) Removal of both cationic and anionic contaminants by amphoteric starch. Carbohydr Polym 138:210–214. https://doi.org/10.1016/j.carbpol.2015.11.064

    Article  CAS  PubMed  Google Scholar 

  6. Yang W, Hu W, Zhang J et al (2021) Tannic acid/Fe3+ functionalized magnetic graphene oxide nanocomposite with high loading of silver nanoparticles as ultra-efficient catalyst and disinfectant for wastewater treatment. Chem Eng J 405:126629. https://doi.org/10.1016/j.cej.2020.126629

    Article  CAS  Google Scholar 

  7. Li R, Gao B, Sun S et al (2015) Amine-cross-linked lignin-based polymer: modification, characterization, and flocculating performance in humic acid coagulation. ACS Sustain Chem Eng 3:3253–3261. https://doi.org/10.1021/acssuschemeng.5b00844

    Article  CAS  Google Scholar 

  8. Wang DC, Yu HY, Song ML et al (2017) Superfast adsorption-disinfection cryogels decorated with cellulose nanocrystal/zinc oxide nanorod clusters for water-purifying microdevices. ACS Sustain Chem Eng 5:6776–6785. https://doi.org/10.1021/acssuschemeng.7b01029

    Article  CAS  Google Scholar 

  9. Salahshoori I, Namayandeh Jorabchi M, Ghasemi S et al (2023) Assessing cationic dye adsorption mechanisms on MIL-53 (Al) nanostructured MOF materials using quantum chemical and molecular simulations: toward environmentally sustainable wastewater treatment. J Water Process Eng 55:104081. https://doi.org/10.1016/j.jwpe.2023.104081

    Article  Google Scholar 

  10. Heiras-Trevizo A, Sáenz-Trevizo A, Pizá-Ruiz P, Amézaga-Madrid P (2023) Al-doped Fe3O4 hollow nanostructured particles: a promising material for application in the coagulation-flocculation process. Mater Lett 330:133404. https://doi.org/10.1016/j.matlet.2022.133404

    Article  CAS  Google Scholar 

  11. Madjene F, Benhabiles O, Boutra A et al (2023) Coagulation/flocculation process using Moringa oleifera bio-coagulant for industrial paint wastewater treatment: optimization by D-optimal experimental design. Int J Environ Sci Technol 20:12131–12140. https://doi.org/10.1007/s13762-023-04808-w

    Article  CAS  Google Scholar 

  12. Fu K, Ding L, Jiang L et al (2017) Flocculation performance of cationic polyacrylamide with high cationic degree in humic acid synthetic water treatment and the effect of kaolin particles. Sep Purif Technol 181:201–212. https://doi.org/10.1016/j.seppur.2017.03.027

    Article  CAS  Google Scholar 

  13. Li X, Zhang X, Xie S et al (2022) Optimized preparation and performance evaluation of a bifunctional chitosan-modified flocculant. RSC Adv 12:20857–20865. https://doi.org/10.1039/d2ra01727j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang H, Guan G, Lou T, Wang X (2023) High performance, cost-effective and ecofriendly flocculant synthesized by grafting carboxymethyl cellulose and alginate with itaconic acid. Int J Biol Macromol 231:123305. https://doi.org/10.1016/j.ijbiomac.2023.123305

    Article  CAS  PubMed  Google Scholar 

  15. Chakraborty S, Dutta B, Ghosh N et al (2023) Strategic grafting of poly METAC and polyacrylamide onto xanthan gum for flocculating kaolin at lower concentration. Mater Today Commun 34:105091. https://doi.org/10.1016/j.mtcomm.2022.105091

    Article  CAS  Google Scholar 

  16. Lin Z, Zhang C, Hu Y et al (2023) Nano aluminum-based hybrid flocculant: synthesis, characterization, application in mine drainage, flocculation mechanism. J Clean Prod 399:136582. https://doi.org/10.1016/j.jclepro.2023.136582

    Article  CAS  Google Scholar 

  17. Jabbar KQ, Barzinjy AA, Hamad SM (2022) Iron oxide nanoparticles: Preparation methods, functions, adsorption and coagulation/flocculation in wastewater treatment. Environ Nanotechnol Monit Manag 17:100661. https://doi.org/10.1016/j.enmm.2022.100661

    Article  CAS  Google Scholar 

  18. Ramli SF, Aziz HA (2023) Potential use of tin tetrachloride and polyacrylamide as a coagulant-coagulant aid in the treatment of highly coloured and turbid matured landfill leachate. Process Saf Environ Prot 170:971–982. https://doi.org/10.1016/j.psep.2022.12.078

    Article  CAS  Google Scholar 

  19. Zhao YX, Gao BY, Zhang GZ et al (2014) Coagulation and sludge recovery using titanium tetrachloride as coagulant for real water treatment: a comparison against traditional aluminum and iron salts. Sep Purif Technol 130:19–27. https://doi.org/10.1016/j.seppur.2014.04.015

    Article  CAS  Google Scholar 

  20. Galloux J, Chekli L, Phuntsho S et al (2015) Coagulation performance and floc characteristics of polytitanium tetrachloride and titanium tetrachloride compared with ferric chloride for coal mining wastewater treatment. Sep Purif Technol 152:94–100. https://doi.org/10.1016/j.seppur.2015.08.009

    Article  CAS  Google Scholar 

  21. Zhou Y, Zheng H, Wang Y et al (2020) Enhanced municipal sludge dewaterability using an amphiphilic microblocked cationic polyacrylamide synthesized through ultrasonic-initiation: copolymerization and flocculation mechanisms. Colloids Surf A Physicochem Eng Asp 594:124645. https://doi.org/10.1016/j.colsurfa.2020.124645

    Article  CAS  Google Scholar 

  22. Zhao D, Song J, Xu J et al (2019) Behaviours and mechanisms of nanofiltration membrane fouling by anionic polyacrylamide with different molecular weights in brackish wastewater desalination. Desalination 468:114058. https://doi.org/10.1016/j.desal.2019.06.024

    Article  CAS  Google Scholar 

  23. Zhang LW, Hua JR, Zhu WJ et al (2018) Flocculation performance of hyperbranched polyethylenimine-grafted cellulose in wastewater treatment. ACS Sustain Chem Eng 6:1592–1601. https://doi.org/10.1021/acssuschemeng.7b02343

    Article  CAS  Google Scholar 

  24. Zhang N, Yang Y, Fan L et al (2023) Coagulation effect of polyaluminum-titanium chloride coagulant and the effect of floc aging in fluoride removal: a mechanism analysis. Sep Purif Technol 325:124674. https://doi.org/10.1016/j.seppur.2023.124674

    Article  CAS  Google Scholar 

  25. Singh RP, Pal S, Krishnamoorthy S et al (2009) High-technology materials based on modified polysaccharides. Pure Appl Chem 81:525–547. https://doi.org/10.1351/PAC-CON-08-08-17

    Article  CAS  Google Scholar 

  26. Eirich FR (1977) Polymers and other composites. Macromol Chem 11:115–125. https://doi.org/10.1016/B978-0-08-020975-3.50006-2

    Article  Google Scholar 

  27. Singh RP, Karmakar GP, Rath SK et al (2000) Biodegradable drag reducing agents and flocculants based on polysaccharides: materials and applications. Polym Eng Sci 40:46–60. https://doi.org/10.1002/pen.11138

    Article  CAS  Google Scholar 

  28. Mishra S, Kundu K (2019) Synthesis, characterization and applications of polyacrylamide grafted fenugreek gum (FG-g-PAM) as flocculant: microwave vs thermal synthesis approach. Int J Biol Macromol 141:792–808. https://doi.org/10.1016/j.ijbiomac.2019.09.033

    Article  CAS  PubMed  Google Scholar 

  29. Pal S, Singh RP (2005) Investigation on flocculation characteristics of cationic polysaccharides: novel polymeric flocculants. Mater Res Innov 9:55–56. https://doi.org/10.1080/14328917.2005.11784893

    Article  Google Scholar 

  30. Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116:2658–2667. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  31. Singh RP, Pal S, Ali SA (2014) Novel biodegradable polymeric flocculants based on cationic polysaccharides. Adv Mater Lett 5:24–30. https://doi.org/10.5185/amlett.2013.6498

    Article  CAS  Google Scholar 

  32. Mishra S, Sen G (2011) Microwave initiated synthesis of polymethylmethacrylate grafted guar (GG-g-PMMA), characterizations and applications. Int J Biol Macromol 48:688–694. https://doi.org/10.1016/j.ijbiomac.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  33. Pal S, Ghosh S, Sen G et al (2009) Cationic tamarind kernel polysaccharide (Cat TKP): a novel polymeric flocculant for the treatment of textile industry wastewater. Int J Biol Macromol 45:518–523. https://doi.org/10.1016/j.ijbiomac.2009.08.004

    Article  CAS  PubMed  Google Scholar 

  34. Zhang W, Deng Q, He Q et al (2018) A facile synthesis of core-shell/bead-like poly (vinyl alcohol)/alginate@ PAM with good adsorption capacity, high adaptability and stability towards Cu(II) removal. J Chem Eng 351:462–472. https://doi.org/10.1016/j.cej.2018.06.129

    Article  CAS  Google Scholar 

  35. Molatlhegi O, Alagha L (2017) Adsorption characteristics of chitosan grafted copolymer on kaolin. Appl Clay Sci 150:342–353. https://doi.org/10.1016/j.clay.2017.09.032

    Article  CAS  Google Scholar 

  36. Lu Y, Shang Y, Huang X et al (2011) Preparation of strong cationic chitosan- graft -polyacrylamide flocculants and their flocculating properties. Ind Eng Chem Res 50:7141–7149. https://doi.org/10.1021/ie2000665

    Article  CAS  Google Scholar 

  37. Liu T, Ding E, Xue F (2017) Polyacrylamide and poly(N, N-dimethylacrylamide) grafted cellulose nanocrystals as efficient flocculants for kaolin suspension. Int J Biol Macromol 103:1107–1112. https://doi.org/10.1016/j.ijbiomac.2017.05.098

    Article  CAS  PubMed  Google Scholar 

  38. Ghorai S, Sarkar A, Panda AB, Pal S (2013) Evaluation of the flocculation characteristics of polyacrylamide grafted xanthan gum/silica hybrid nanocomposite. Ind Eng Chem Res 52:9731–9740. https://doi.org/10.1021/ie400550m

    Article  CAS  Google Scholar 

  39. Pal S, Ghorai S, Das C et al (2012) Carboxymethyl tamarind-g-poly (acrylamide)/silica: a high performance hybrid nanocomposite for adsorption of methylene blue dye. Ind Eng Chem Res 51:15546–15556. https://doi.org/10.1021/ie301134a

    Article  CAS  Google Scholar 

  40. Narimani A, Kordnejad F, Hemmati M, Duong A (2022) Synthesis, characterization, and rheological behavior of HPG graft poly (AM-co-AMPS)/GO nanocomposite hydrogel system for enhanced oil recovery. J Dispers Sci Technol 45:26–38. https://doi.org/10.1080/01932691.2022.2125876

    Article  CAS  Google Scholar 

  41. Baloochestanzadeh S, Hassanajili S, Escrochi M (2021) Rheological properties and swelling behavior of nanocomposite preformed particle gels based on starch-graft-polyacrylamide loaded with nanosilica. Rheol Acta 60:571–585. https://doi.org/10.1007/s00397-021-01287-z

    Article  CAS  Google Scholar 

  42. Lee KE, Teng TT, Morad N et al (2011) Flocculation activity of novel ferric chloride-polyacrylamide (FeCl3-PAM) hybrid polymer. Desalination 266:108–113. https://doi.org/10.1016/j.desal.2010.08.009

    Article  CAS  Google Scholar 

  43. Lee KE, Teng TT, Morad N et al (2010) Flocculation of kaolin in water using novel calcium chloride-polyacrylamide (CaCl2-PAM) hybrid polymer. Sep Purif Technol 75:346–351. https://doi.org/10.1016/j.seppur.2010.09.003

    Article  CAS  Google Scholar 

  44. Wang S, Alagha L, Xu Z (2014) Adsorption of organic–inorganic hybrid polymers on kaolin from aqueous solutions. Colloids Surf A Physicochem Eng Asp 453:13–20. https://doi.org/10.1016/j.colsurfa.2014.03.069

    Article  CAS  Google Scholar 

  45. Haasler S, Christensen ML, Reitzel K (2023) Synthetic and biopolymers for lake restoration—an evaluation of flocculation mechanism and dewatering performance. J Environ Manag 331:117199. https://doi.org/10.1016/j.jenvman.2022.117199

    Article  CAS  Google Scholar 

  46. Kurusu RS, Lapointe M, Tufenkji N (2022) Sustainable iron-grafted cellulose fibers enable coagulant recycling and improve contaminant removal in water treatment. Chem Eng J 430:132927. https://doi.org/10.1016/j.cej.2021.132927

    Article  CAS  Google Scholar 

  47. Serajuddin M, Kacham AR, Mukhopadhyay S (2023) Studies on the rheological characteristics of flocculated calcitic ore slurry. J Inst Eng Ser D. https://doi.org/10.1007/s40033-023-00489-4

    Article  Google Scholar 

  48. Wang JP, Chen YZ, Zhang SJ, Yu HQ (2008) A chitosan-based flocculant prepared with gamma-irradiation-induced grafting. Bioresour Technol 99:3397–3402. https://doi.org/10.1016/j.biortech.2007.08.014

    Article  CAS  PubMed  Google Scholar 

  49. Ghayor C, Bhattacharya I, Weber FE (2021) The optimal microarchitecture of 3D-printed β-TCP bone substitutes for vertical bone augmentation differs from that for osteoconduction. Mater Des 204:109650. https://doi.org/10.1016/j.matdes.2021.109650

    Article  CAS  Google Scholar 

  50. Hermosillo-Ochoa E, Picos-Corrales LA, Licea-Claverie A (2021) Eco-friendly flocculants from chitosan grafted with PNVCL and PAAc: hybrid materials with enhanced removal properties for water remediation. Sep Purif Technol 258:118052. https://doi.org/10.1016/j.seppur.2020.118052

    Article  CAS  Google Scholar 

  51. Picos-Corrales LA, Sarmiento-Sánchez JI, Ruelas-Leyva JP et al (2020) Environment-friendly approach toward the treatment of raw agricultural wastewater and river water via flocculation using chitosan and bean straw flour as bioflocculants. ACS Omega 5:3943–3951. https://doi.org/10.1021/acsomega.9b03419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pal P, Pandey JP, Sen G (2017) Synthesis, characterization and flocculation studies of a novel graft copolymer towards destabilization of carbon nano-tubes from effluent. Polymer (Guildf) 112:159–168. https://doi.org/10.1016/j.polymer.2017.01.059

    Article  CAS  Google Scholar 

  53. Kumari N, Mishra S (2022) Synthesis, characterization and flocculation efficiency of grafted Moringa gum based derivatives. Carbohydr Polym 281:119079. https://doi.org/10.1016/j.carbpol.2021.119079

    Article  CAS  PubMed  Google Scholar 

  54. Chakraborty S, Dutta S, Chatterjee R et al (2023) Flocculation of low concentration kaolin suspension using architecturally modified Xanthan gum: effect of grafting to hyperbranching. J Taiwan Inst Chem Eng 150:105066. https://doi.org/10.1016/j.jtice.2023.105066

    Article  CAS  Google Scholar 

  55. Mate CJ, Mishra S, Srivastava PK (2020) Design of low-cost Jhingan gum-based flocculant for remediation of wastewater: flocculation and biodegradation studies. Int J Environ Sci Technol 17:2545–2562. https://doi.org/10.1007/s13762-019-02587-x

    Article  CAS  Google Scholar 

  56. Billmeyer JFW (1984) Textbook of polymer science, 3rd edn. Wiley

    Google Scholar 

  57. Mittal H, Maity A, Ray SS (2015) Synthesis of co-polymer-grafted gum karaya and silica hybrid organic–inorganic hydrogel nanocomposite for the highly effective removal of methylene blue. Chem Eng J 279:166–179. https://doi.org/10.1016/j.cej.2015.05.002

    Article  CAS  Google Scholar 

  58. Pal S, Patra AS, Ghorai S et al (2015) Modified guar gum/SiO2: development and application of a novel hybrid nanocomposite as a flocculant for the treatment of wastewater. Environ Sci Water Res Technol 1:84–95. https://doi.org/10.1039/C4EW00023D

    Article  CAS  Google Scholar 

  59. Lapointe M, Barbeau B (2020) Understanding the roles and characterizing the intrinsic properties of synthetic vs. natural polymers to improve clarification through interparticle bridging: a review. Sep Purif Technol 231:115893. https://doi.org/10.1016/j.seppur.2019.115893

    Article  CAS  Google Scholar 

  60. Kumar A, Basu D, Sahoo S et al (2023) Green approaches for functionalized silica-based natural rubber nanocomposites using eco-friendly sodium alginate biopolymers for superior static and dynamic behaviors. ACS Sustain Chem Eng 11:6866–6878. https://doi.org/10.1021/acssuschemeng.2c06059

    Article  CAS  Google Scholar 

  61. Patra AS, Ghorai S, Ghosh S et al (2016) Selective removal of toxic anionic dyes using a novel nanocomposite derived from cationically modified guar gum and silica nanoparticles. J Hazard Mater 301:127–136. https://doi.org/10.1016/j.jhazmat.2015.08.042

    Article  CAS  PubMed  Google Scholar 

  62. Patra AS, Ghorai S, Sarkar D et al (2017) Anionically functionalized guar gum embedded with silica nanoparticles: an efficient nanocomposite adsorbent for rapid adsorptive removal of toxic cationic dyes and metal ions. Bioresour Technol 225:367–376. https://doi.org/10.1016/j.biortech.2016.11.093

    Article  CAS  PubMed  Google Scholar 

  63. Saya L, Malik V, Singh A et al (2021) Guar gum based nanocomposites: role in water purification through efficient removal of dyes and metal ions. Carbohydr Polym 261:117851. https://doi.org/10.1016/j.carbpol.2021.117851

    Article  CAS  PubMed  Google Scholar 

  64. Elella MHA, Goda ES, Gamal H et al (2021) Green antimicrobial adsorbent containing grafted xanthan gum/SiO2 nanocomposites for malachite green dye. Int J Biol Macromol 191:385–395. https://doi.org/10.1016/j.ijbiomac.2021.09.040

    Article  CAS  PubMed  Google Scholar 

  65. Bouaziz F, Koubaa M, Helbert CB et al (2015) Purification, structural data and biological properties of polysaccharide from Prunus amygdalus gum. Int J Food Sci Technol 50:578–584. https://doi.org/10.1111/ijfs.12687

    Article  CAS  Google Scholar 

  66. Theophil Anand G, Renuka D, Ramesh R et al (2019) Green synthesis of ZnO nanoparticle using Prunus dulcis (Almond Gum) for antimicrobial and supercapacitor applications. Surf Interfaces 17:100376. https://doi.org/10.1016/j.surfin.2019.100376

    Article  CAS  Google Scholar 

  67. Bouaziz F, Koubaa M, Kallel F et al (2017) Adsorptive removal of malachite green from aqueous solutions by almond gum: kinetic study and equilibrium isotherms. Int J Biol Macromol 105:56–65. https://doi.org/10.1016/j.ijbiomac.2017.06.106

    Article  CAS  PubMed  Google Scholar 

  68. Syed Ahamed Hussain I, Jaisankar V (2017) An eco-friendly synthesis, characterization and antibacterial applications of novel almond gum—poly(acrylamide) based hydrogel silver nanocomposite. Polym Test 62:154–161. https://doi.org/10.1016/j.polymertesting.2017.06.021

    Article  CAS  Google Scholar 

  69. Singh B, Mohan M, Kumar R (2022) Synthesis of hydrocortisone containing dietary fiber almond gum-based hydrogels as sustained drug delivery carriers for use in colon inflammation. Food Hydrocoll Heal 2:100057. https://doi.org/10.1016/j.fhfh.2022.100057

    Article  CAS  Google Scholar 

  70. Jaison D, Chandrasekaran G, Mothilal M (2020) pH-sensitive natural almond gum hydrocolloid based magnetic nanocomposites for theragnostic applications. Int J Biol Macromol 154:256–266. https://doi.org/10.1016/j.ijbiomac.2020.03.103

    Article  CAS  PubMed  Google Scholar 

  71. Bouaziz F, Koubaa M, Kallel F et al (2015) Efficiency of almond gum as a low-cost adsorbent for methylene blue dye removal from aqueous solutions. Ind Crops Prod 74:903–911. https://doi.org/10.1016/j.indcrop.2015.06.007

    Article  CAS  Google Scholar 

  72. Lv S, Peng W, Cao Y et al (2022) Synthesis and characterisation of a novel pH-sensitive flocculant and its flocculation performance. J Mol Liq 348:118480. https://doi.org/10.1016/j.molliq.2022.118480

    Article  CAS  Google Scholar 

  73. Wang K, Ran T, Yu P et al (2021) Evaluation of renewable pH-responsive starch-based flocculant on treating and recycling of highly saline textile effluents. Environ Res 201:1–10. https://doi.org/10.1016/j.envres.2021.111489

    Article  CAS  Google Scholar 

  74. Wei T, Wu L, Yu F et al (2018) pH-responsive chitosan-based flocculant for precise dye flocculation control and the recycling of textile dyeing effluents. RSC Adv 8:39334–39340. https://doi.org/10.1039/c8ra07424k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang Y, Shi Y, Xu M et al (2016) Smart flocculant with temperature and pH response derived from starch. RSC Adv 6:44383–44391. https://doi.org/10.1039/c6ra04060h

    Article  CAS  Google Scholar 

  76. Abousalman-Rezvani Z, Roghani-Mamaqani H, Riazi H, Abousalman-Rezvani O (2022) Water treatment using stimuli-responsive polymers. Polym Chem 13:5940–5964. https://doi.org/10.1039/d2py00992g

    Article  CAS  Google Scholar 

  77. Iftekhar S, Srivastava V, Casas A, Sillanpää M (2018) Synthesis of novel GA-g-PAM/SiO2 nanocomposite for the recovery of rare earth elements (REE) ions from aqueous solution. J Clean Prod 170:251–259. https://doi.org/10.1016/j.jclepro.2017.09.166

    Article  CAS  Google Scholar 

  78. Saleh TA, Nur MM, Satria M, Al-Arfaj AA (2023) Synthesis of novel hydrophobic nanocomposite-modified silica as efficient shale inhibitor in fuel industry. Surf Interfaces 38:1–10. https://doi.org/10.1016/j.surfin.2023.102837

    Article  CAS  Google Scholar 

  79. Ojha AK, Chandra K, Ghosh K, Islam SS (2010) Glucans from the alkaline extract of an edible mushroom, Pleurotus florida, cv Assam Florida: isolation, purification, and characterization. Carbohydr Res 345:2157–2163. https://doi.org/10.1016/j.carres.2010.06.015

    Article  CAS  PubMed  Google Scholar 

  80. Chandra K, Ghosh K, Ojha AK, Islam SS (2009) Chemical analysis of a polysaccharide of unripe (green) tomato (Lycopersicon esculentum). Carbohydr Res 344:2188–2194. https://doi.org/10.1016/j.carres.2009.08.029

    Article  CAS  PubMed  Google Scholar 

  81. Mondal S, Das D, Maiti D et al (2009) Structural investigation of a heteropolysaccharide isolated from the green fruits of Capsicum annuum. Carbohydr Res 344:1130–1135. https://doi.org/10.1016/j.carres.2009.04.004

    Article  CAS  PubMed  Google Scholar 

  82. Brostow W, Hagg Lobland HE, Pal S, Singh RP (2009) Polymeric flocculants for wastewater and industrial effluent treatment. J Mater Educ 31:156–166

    Google Scholar 

  83. Dey KP, Mishra S, Sen G (2017) Synthesis and characterization of polymethylmethacrylate grafted barley for treatment of industrial and municipal wastewater. J Water Process Eng 18:113–125. https://doi.org/10.1016/j.jwpe.2017.06.008

    Article  Google Scholar 

  84. Ngema SS, Basson AK, Maliehe TS (2020) Synthesis, characterization and application of polyacrylamide grafted bioflocculant. Phys Chem Earth 115:102821. https://doi.org/10.1016/j.pce.2019.102821

    Article  Google Scholar 

  85. Ghorai S, Sarkar A, Raoufi M et al (2014) Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica. ACS Appl Mater Interfaces 6:4766–4777. https://doi.org/10.1021/am4055657

    Article  CAS  PubMed  Google Scholar 

  86. Sen G, Kumar R, Ghosh S, Pal S (2009) A novel polymeric flocculant based on polyacrylamide grafted carboxymethylstarch. Carbohydr Polym 77:822–831. https://doi.org/10.1016/j.carbpol.2009.03.007

    Article  CAS  Google Scholar 

  87. Mishra S, Sinha S, Dey KP, Sen G (2014) Synthesis, characterization and applications of polymethylmethacrylate grafted psyllium as flocculant. Carbohydr Polym 99:462–468. https://doi.org/10.1016/j.carbpol.2013.08.047

    Article  CAS  PubMed  Google Scholar 

  88. Saber-samandari S, Gazi M (2015) Pullulan based porous semi-IPN hydrogel: synthesis, characterization and its application in the removal of mercury from aqueous solution. J Taiwan Inst Chem Eng 51:143–151. https://doi.org/10.1016/j.jtice.2015.01.013

    Article  CAS  Google Scholar 

  89. Rezaei A, Tavanai H, Nasirpour A (2016) Fabrication of electrospun almond/PVA nanofibers as a thermostable delivery system for vanilin. Int J Biol Macromol 91:536–543. https://doi.org/10.1016/j.ijbiomac.2016.06.005

    Article  CAS  PubMed  Google Scholar 

  90. Iftekhar S, Srivastava V, Casas A et al (2018) Synthesis of novel GA-g-PAM/SiO2 nanocomposite for the recovery of rare earth elements (REE) ions from aqueous solution. J Clean Prod 170:251–259. https://doi.org/10.1016/j.jclepro.2017.09.166

    Article  CAS  Google Scholar 

  91. Li S, Chen F, Lin F et al (2018) Adsorption performance of SiO2/CPAM composites for aqueous Ca(II). BioResources 13:3554–3570. https://doi.org/10.15376/biores.13.2.3554-3570

    Article  CAS  Google Scholar 

  92. Kumar CV, Pattammattel A (2017) Characterization techniques for graphene. In: Introd to graphene, pp 45–74. https://doi.org/10.1016/b978-0-12-813182-4.00003-9

  93. Natu V, Benchakar M, Canaff C (2021) Review: A critical analysis of the X-ray photoelectron spectra of Ti3C2Tz MXenes. Matter 4:1224–1251. https://doi.org/10.1016/j.matt.2021.01.015

    Article  CAS  Google Scholar 

  94. Thøgersen A, Selj JH, Marstein ES (2012) Oxidation effects on graded porous silicon anti-reflection coatings. J Electrochem Soc 159:D276–D281. https://doi.org/10.1149/2.jes113659

    Article  CAS  Google Scholar 

  95. Chang M, Song Y, Chen J et al (2018) Photocatalytic and photoluminescence properties of core–shell SiO2@TiO2:Eu3+, Sm3+ and Its etching products. ACS Sustain Chem Eng 6:223–236. https://doi.org/10.1021/acssuschemeng.7b02285

    Article  CAS  Google Scholar 

  96. Ruiz-Cañas MC, Quintero HI, Corredor LM et al (2020) New nanohybrid based on hydrolyzed polyacrylamide and silica nanoparticles: morphological, structural and thermal properties. Polymers 12:1152. https://doi.org/10.3390/POLYM12051152

    Article  PubMed  PubMed Central  Google Scholar 

  97. Wang H, Chao L, Wei X et al (2019) Design of SiO2–TiO2–PAM composite flocculant with self-degrading characteristics and optimization of the flocculation process using a combination of central composite design and response surface methodology. Colloids Surf A Physicochem Eng Asp 583:123982. https://doi.org/10.1016/j.colsurfa.2019.123982

    Article  CAS  Google Scholar 

  98. Kaur A, Chahal P, Hogan T (2016) Selective fabrication of SiC/Si diodes by excimer laser under ambient conditions. IEEE Electron Device Lett 37:142–145. https://doi.org/10.1109/LED.2015.2508479

    Article  CAS  Google Scholar 

  99. Singh RP (1995) Advanced turbulent drag reducing and flocculating materials based on polysaccharides. In: Prasad PN, Mark JE, Fai TJ (eds) Polymers and other advanced materials. Springer US, Boston. https://doi.org/10.1007/978-1-4899-0502-4_24

    Chapter  Google Scholar 

  100. Brostow W, Pal S, Singh RP (2007) A model of flocculation. Mater Lett 61:4381–4384. https://doi.org/10.1016/j.matlet.2007.02.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is financially supported by the Science and Engineering Research Board (SERB) core research grant (CRG/2021/007402). Munmun Choudhary acknowledge Birla Institute of Technology, Mesra, Ranchi for Institute Research Fellowship. The authors thank Dr. K. Jayaram Kumar, Professor, Pharmaceutical Sciences and Tech, BIT Mesra for support in molecular weight determination. The authors would like to thank Jyoti Prabha Kujur, IIT(ISM), Dhanbad for help in XPS analysis. We would also thank the Central Instrumentation Facility (C.I.F), BIT, Mesra for the characterization of samples.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Munmun Choudhary: Conducting Experiment, Writing Manuscript Draft. Dr. Sumit Mishra: Conceiving Research, Manuscript Correction.

Corresponding author

Correspondence to Sumit Mishra.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, M., Mishra, S. Silica Functionalized Almond Gum Derivatives for Integrated Flocculation Cycles for Natural and Synthetic Water Systems. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03299-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-024-03299-1

Keywords

Navigation