Skip to main content
Log in

Development and Characterization of Sodium Alginate-Based Bio-hybrid Super Absorbent Polymer with High Retention Capacity Suitable for Baby Diapers

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Due to their capacity of water absorption, super absorbent polymers (SAPs) are greatly requested in hygienic applications, thus representing large volume products needing for a good biodegradability. This study aims to develop new SAPs for baby diapers by combining sodium alginate (SA) and cellulose nanocrystals (CNC) with acrylic acid (AA). The effect of different AA/SA ratios and CNC concentrations in the presence of ammonium persulfate (APS) as an initiator, and N–N-methylene bis-acrylamide (NMBA) as a cross-linker is investigated. We assess morphological and physicochemical properties of the SAPs, as well as their absorption characteristics and rheological properties. The results show that SAPs with AA/SA weight ratio of 70:30 containing 2% w/w CNC have the highest water absorption capacity, i.e., 78.4 g/g in saline solution. These SAPs also demonstrate high retention capacity and better absorption capacity under load than other SAPs. We further optimize the formulation by increasing the neutralization degree of AA and reducing the solid content, reaching an absorption capacity in the salt solution up to 100.08 g/g. Finally, the absorbent core made with fewer amounts of SAPs and fluff pulp led to functional properties superior to those of commercial baby diapers. High polysaccharide content SAPs could contribute to improve diaper sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. Bortolin A, Serafim AR, Aouada FA, Luiz HC, Mattoso LHC, Ribeiro C (2016) Macro- and micronutrient simultaneous slow release from highly swellable nanocomposite hydrogels. J Agric Food Chem 64(16):3133–3140. https://doi.org/10.1021/acs.jafc.6b00190

    Article  CAS  PubMed  Google Scholar 

  2. Ismaeilimoghadam S, Sheikh M, Taheri P, Maleki S, Resalati H, Jonoobi M, Azimi B, Danti S (2022) Manufacturing of fluff pulp using different pulp sources and bentonite on an industrial scale for absorbent hygienic products. Molecules. https://doi.org/10.3390/molecules27155022

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bashari A, Rouhani Shirvan A, Shakeri M (2018) Cellulose-based hydrogels for personal care products. Polym Adv Technol 29(12):2853–2867. https://doi.org/10.1002/pat.4290

    Article  CAS  Google Scholar 

  4. Zhang MY, Cheng Z, Zhao TQ, Liu MZ, Hu MJ, Li J (2014) Synthesis, characterization and swelling behaviors of salt-sensitive maize barn-poly(acrylic acid) superabsorbent hydrogel. J Agric Food Chem 62(35):8867–8874. https://doi.org/10.1021/jf5021279

    Article  CAS  PubMed  Google Scholar 

  5. Patino-Maso J, Serra-Parareda F, Tarres Q, Mutje P, Xavier Espinach F, Delgado-Aguilar M (2019) TEMPO-oxidized cellulose nanofibers: a potential bio-based superabsorbent for diaper production. Nanomaterials. https://doi.org/10.3390/nano9091271

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yadav S, Pujitha Illa M, Restogi T, Shekhar Sharma C (2016) High absorbency cellulose acetate electrospun nanofibers for feminine hygiene application. Appl Mater Today 4:62–70. https://doi.org/10.1016/j.apmt.2016.07.002

    Article  Google Scholar 

  7. Ajmeri JR, Ajmeri CJ (2016) Developments in the use of nonwovens for disposable hygiene products. In: Kellie G (ed) Woodhead publishing series in textiles, advances in technical nonwovens. Woodhead Publishing, pp 473–496. https://doi.org/10.1016/B978-0-08-100575-0.00018-8

  8. Qin Y (2016) Superabsorbent polymers and their medical applications. In: Qin Y (eds) Woodhead publishing series in textiles, medical textile materials. Woodhead Publishing, pp 71–88. https://doi.org/10.1016/B978-0-08-100618-4.00006-6

  9. Mistry PA, Konar MN, Latha S, Chadha U, Bhardwaj P, Eticha TK (2023) Chitosan superabsorbent biopolymers in sanitary and hygiene applications. Int J Polym Sci. https://doi.org/10.1155/2023/4717905

    Article  Google Scholar 

  10. Ismaeilimoghadam S, Jonoobi M, Hamzeh Y, Danti S (2022) Effect of nanocellulose types on microporous acrylic acid/sodium alginate super absorbent polymers. J Funct Biomater. https://doi.org/10.3390/jfb13040273

    Article  PubMed  PubMed Central  Google Scholar 

  11. Daemi H, Barikani M (2012) Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Scientia Iranica 19(6):2023–2028. https://doi.org/10.1016/j.scient.2012.10.005

    Article  CAS  Google Scholar 

  12. Suhail M, Hsieh YH, Khan A, Minhas MU, Wu PC (2021) Preparation and in vitro evaluation of aspartic/alginic acid based semi-interpenetrating network hydrogels for controlled release of ibuprofen. Gels. https://doi.org/10.3390/gels7020068

    Article  PubMed  PubMed Central  Google Scholar 

  13. Azimi B, Maleki H, Gigante V, Bagherzadeh R, Mezzetta A, Milazzo M, Guazzelli L, Cinelli P, Lazzeri A, Danti S (2022) Cellulose-based fiber spinning processes using ionic liquids. Cellulose 29(6):3079–3129. https://doi.org/10.1007/s10570-022-04473-1

    Article  CAS  Google Scholar 

  14. Tang Y, Yang H, Vignolini S (2022) Recent progress in production methods for cellulose nanocrystals: leading to more sustainable processes. Adv Sustain Syst 6:2100100. https://doi.org/10.1002/adsu.202100100

    Article  CAS  Google Scholar 

  15. Ismaeilimoghadam S, Jonoobi M, Ashori A, Shahraki A, Azimi B, Danti S (2023) Interpenetrating and semi-interpenetrating network superabsorbent hydrogels based on sodium alginate and cellulose nanocrystals: a biodegradable and high-performance solution for adult incontinence pads. Int J Biol Macromol 253:127118. https://doi.org/10.1016/j.ijbiomac.2023.127118

    Article  CAS  PubMed  Google Scholar 

  16. Coltelli M-B, Danti S (2020) Biobased materials for skin-contact products promoted by POLYBIOSKIN project. J Funct Biomater 11(4):77. https://doi.org/10.3390/jfb11040077

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kenawy LR, Seggiani M, Hosny A, Rashad M, Cinelli P, Saad-Allah KM, El-Sharnouby M, Shendy S, Azaam MM (2021) Superabsorbent composites based on rice husk for agricultural applications: swelling behavior, biodegradability in soil and drought alleviation. J Saudi Chem Soc. https://doi.org/10.1016/j.jscs.2021.101254

    Article  Google Scholar 

  18. Bekin S, Sarmad S, Gurkan K, Keceli G, Gurgad G (2014) Synthesis, characterization and bending behavior of electroresponsive sodium alginate/poly(acrylic acid) interpenetrating network films under an electric field stimulus. Sens Actuators B Chem 202:878–892. https://doi.org/10.1016/j.snb.2014.06.051

    Article  CAS  Google Scholar 

  19. Mohamadinia P, Anarjan N, Jafarizadeh-Malmiri H (2021) Preparation and characterization of sodium alginate/acrylic acid composite hydrogels conjugated to silver nanoparticles as an antibiotic delivery system. Green Process Synth 10(1):860–873. https://doi.org/10.1515/gps-2021-0081

    Article  CAS  Google Scholar 

  20. Jalil A, Khan S, Naeem F, Haider MS, Sarwar S, Riaz A, Ranjha NM (2016) The structural, morphological and thermal properties of grafted pH-sensitive interpenetrating highly porous polymeric composites of sodium alginate/acrylic acid copolymers for controlled delivery of diclofenac potassium. Des Monomers Polym 20(1):308–324. https://doi.org/10.1080/15685551.2016.12559834

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mohamed SF, Mahmoud GA, Aboutaleb MF (2013) Synthesis and characterization of poly(acrylic acid)-g-sodium alginate hydrogel initiated by gamma irradia-tion for controlled release of chlortetracycline HCl. Monatsh Chem 144:129–137. https://doi.org/10.1007/s00706-012-0776-7

    Article  CAS  Google Scholar 

  22. Chuang CY, Chiu WY, Don TM (2011) Synthesis of chitosan-poly(acrylic acid) complex particles by dispersion polymerization and their applications in pH buffering and drug release. J Appl Polym Sci 120(3):1659–1670. https://doi.org/10.1002/app.33285

    Article  CAS  Google Scholar 

  23. Hua S, Wang A (2009) Synthesis, characterization and swelling behaviors of sodium alginate-g-poly(acrylic acid)/sodium humate superabsorbent. Carbohydr Polym 75(1):79–84. https://doi.org/10.1016/j.carbpol.2008.06.013

    Article  CAS  Google Scholar 

  24. Makhado E, Pandey S, Modibane KD, Kang M, Hato MJ (2020) Sequestration of methylene blue dye using sodium alginate poly(acrylic acid)@ZnO hydrogel nanocomposite: kinetic, isotherm, and thermodynamic investigations. Int J Biol Macromol 162:60–73. https://doi.org/10.1016/j.ijbiomac.2020.06.143

    Article  CAS  PubMed  Google Scholar 

  25. Wang Q, Zhang J, Wang A (2009) Preparation and characterization of a novel pH-sensitive chitosan-g-poly(acrylic acid)/attapulgite/sodium alginate composite hydrogel bead for controlled release of diclofenac sodium. Carbohydr Polym 78(4):731–737. https://doi.org/10.1016/j.carbpol.2009.06.010

    Article  CAS  Google Scholar 

  26. Płotka-Wasylka J, Makoś-Chełstowska P, Kurowska-Susdorf A, Santoyo Treviño MJ, Zarazúa Guzmán S, Mostafa H, Cordella M (2022) End-of-life management of single-use baby diapers: analysis of technical, health and environment aspects. Sci Total Environ 836:155339. https://doi.org/10.1016/j.scitotenv.2022.155339

    Article  CAS  PubMed  Google Scholar 

  27. Coltelli M-B, Aliotta L, Vannozzi A, Morganti P, Panariello L, Danti S, Neri S, Fernandez-Avila C, Fusco A, Donnarumma G, Lazzeri A (2020) Properties and skin compatibility of films based on poly(lactic acid) (PLA) bionanocomposites incorporating chitin nanofibrils (CN). J Funct Biomater 11(2):11020021. https://doi.org/10.3390/jfb11020021

    Article  CAS  Google Scholar 

  28. Wang M, Li X, Zhang T, Deng L, Li P, Wang X, Hasiao BS (2018) Eco-friendly poly(acrylic acid)-sodium alginate nanofibrous hydrogel: a multifunctional platform for superior removal of Cu(II) and sustainable catalytic applications. Colloids Surf A 558:228–241. https://doi.org/10.1016/j.colsurfa.2018.08.074

    Article  CAS  Google Scholar 

  29. Chang CY, Duan B, Zhang LN (2009) Fabrication and characterization of novel macroporous cellulose-alginate hydrogels. Polymer 50(23):5467–5473. https://doi.org/10.1016/j.polymer.2009.06.001

    Article  CAS  Google Scholar 

  30. Cecchini B, Rovelli R, Zavagna L, Azimi B, Macchi T, Kaya E, Esin S, Bruschini L, Milazzo M, Batoni G, Danti S (2023) Alginate-based patch for middle ear delivery of probiotics: a preliminary study using electrospray and electrospinning. Appl Sci 13(23):12750. https://doi.org/10.3390/app132312750

    Article  CAS  Google Scholar 

  31. Lim LS, Rosli NA, Ahmad I, Lazim AM, Mohd Amin MCI (2017) Synthesis and swelling behavior of pH-sensitive semi-IPN superabsorbent hydrogels based on poly(acrylic acid) reinforced with cellulose nanocrystals. Nanomaterials. https://doi.org/10.3390/nano7110399

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mallepally RR, Bernard I, Marin MA, Ward KR, McHugh MA (2013) Superabsorbent alginate aerogels. J Supercrit Fluids 79:202–208. https://doi.org/10.1016/j.supflu.2012.11.024

    Article  CAS  Google Scholar 

  33. Thakur S, Pandey S, Arotiba OA (2017) Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue. Carbohydr Polym 153:34–46. https://doi.org/10.1016/j.carbpol.2016.06.104

    Article  CAS  Google Scholar 

  34. Finkenstadt VL, Willett JL (2005) Reactive extrusion of starch-polyacrylamide graft copolymers: effects of monomer/starch ratio and moisture content. Macromol Chem Phys 206(16):1648–1652. https://doi.org/10.1002/macp.200500157

    Article  CAS  Google Scholar 

  35. Nasef MM, Hegazy EA (2004) Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films. Prog Polym Sci 29(6):499–561. https://doi.org/10.1016/j.progpolymsci.2004.01.003

    Article  CAS  Google Scholar 

  36. Zhao J, Li S, Zhao Y, Peng Z (2019) Effects of cellulose nanocrystal polymorphs and initial state of hydrogels on swelling and drug release behavior of alginate-based hydrogels. Polym Bull 77:4401–4416. https://doi.org/10.1007/s00289-019-02972-z

    Article  CAS  Google Scholar 

  37. Park M, Lee D, Hyun J (2015) Nanocellulose–alginate hydrogel for cell encapsulation. Carbohydr Polym 116:223–228. https://doi.org/10.1016/j.carbpol.2014.07.059

    Article  CAS  PubMed  Google Scholar 

  38. Treenate P, Monvisade P (2017) In vitro drug release profiles of pH-sensitive hydroxyethylacryl chitosan/sodium alginate hydrogels using paracetamol as a soluble model drug. Int J Biol Macromol 99:71–78. https://doi.org/10.1016/j.ijbiomac.2017.02.061

    Article  CAS  PubMed  Google Scholar 

  39. Ilgin P, Ozay H, Ozay O (2020) Synthesis and characterization of pH responsive alginate based-hydrogels as oral drug delivery carrier. J Polym Res. https://doi.org/10.1007/s10965-020-02231-0

    Article  Google Scholar 

  40. Tan Luo M, Long Li H, Huang C, Rong Zhang H, Xiong L, Fang Chen X, De Chen X (2018) Cellulose-based absorbent production from bacterial cellulose and acrylic acid: synthesis and performance. Polymers. https://doi.org/10.3390/polym10070702

    Article  Google Scholar 

  41. Krafcik MJ, Erk KA (2016) Characterization of superabsorbent poly(sodium-acrylate acrylamide) hydrogels and influence of chemical structure on internally cured mortar. Mater Struct 49:4765–4778. https://doi.org/10.1617/s11527-016-0823-7

    Article  CAS  Google Scholar 

  42. Yoshimura T, Matsunaga M, Fujioka R (2009) Alginate-based superabsorbent hydrogels composed of carboxylic acid-amine interaction: preparation and characterization. e-Polymers. https://doi.org/10.1515/epoly.2009.9.1.968

    Article  Google Scholar 

  43. Peng XW, Ren JL, Zhong LX, Peng F, Sun RC (2011) Xylan-rich hemicelluloses-graft-acrylic acid ionic hydrogels with rapid responses to pH, salt, and organic solvents. J Agric Food Chem 59(15):8208–8215. https://doi.org/10.1021/jf201589y

    Article  CAS  PubMed  Google Scholar 

  44. Bao Y, Ma J, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr Polym 84(1):76–82. https://doi.org/10.1016/j.carbpol.2010.10.061

    Article  CAS  Google Scholar 

  45. Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46(1):92–100. https://doi.org/10.1016/j.eurpolymj.2009.04.033

    Article  CAS  Google Scholar 

  46. Fang S, Wang G, Li P, Xing R, Liu S, Qin Y, Yu H, Chen X, Li K (2018) Synthesis of chitosan derivative graft acrylic acid superabsorbent polymers and its application as water retaining agent. Int J Biol Macromol 115:754–761. https://doi.org/10.1016/j.ijbiomac.2018.04.072

    Article  CAS  PubMed  Google Scholar 

  47. Chen Y (2020) Hydrogels based on natural polymers. Elsevier, Amsterdam, p 552. https://doi.org/10.1016/C2018-0-00171-1

    Book  Google Scholar 

  48. Pourjavadi A, Kurdtabar M (2007) Collagen-based highly porous hydrogel without any porogen: synthesis and characteristics. Eur Polym J 43(3):877–889. https://doi.org/10.1016/j.eurpolymj.2006.12.020

    Article  CAS  Google Scholar 

  49. Samanta HS, Ray SK (2014) Synthesis, characterization, swelling and drug release behavior of semi-interpenetrating network hydrogels of sodium alginate and polyacrylamide. Carbohydr Polym 99:666–678. https://doi.org/10.1016/j.carbpol.2013.09.004

    Article  CAS  PubMed  Google Scholar 

  50. Kim JS, Kim DH, Lee YS (2021) The influence of monomer composition and surface-crosslinking condition on biodegradation and gel strength of super absorbent polymer. Polymers. https://doi.org/10.3390/polym13040663

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bagheri Marandi G, Hariria S, Mahdavinia GR (2009) Effect of hydrophobic monomer on the synthesis and swelling behavior of a collagen-graft-poly [(acrylic acid)-co-(sodium acrylate)] hydrogel. Polym Int 58(2):227–235. https://doi.org/10.1002/pi.2520

    Article  CAS  Google Scholar 

  52. Peng MC, Sethu V, Selvarajoo A (2020) Performance study of chia seeds, chia flour and Mimosa pudica hydrogel as polysaccharide-based superabsorbent polymers for sanitary napkins. Mater Today Commun. https://doi.org/10.1016/j.mtcomm.2020.101712

    Article  Google Scholar 

  53. Parvathy PC, Jyothi AN (2014) Rheological and thermal properties of saponified cassava starch-g-poly(acrylamide) superabsorbent polymers varying in grafting parameters and absorbency. J Appl Polym Sci. https://doi.org/10.1002/app.40368

    Article  Google Scholar 

  54. Seetapan N, Wongsawaeng J, Kiatkamjornwong S (2011) Polym Adv Technol 22(12):1685–1695. https://doi.org/10.1002/pat.1658

    Article  CAS  Google Scholar 

  55. Czarnecka E, Nowaczyk J (2021) Synthesis and characterization superabsorbent polymers made of starch, acrylic acid, acrylamide, poly(vinyl alcohol), 2-hydroxyethyl methacrylate, 2-acrylamido-2-methylpropane sulfonic acid. Int J Mol Sci. https://doi.org/10.3390/ijms22094325

    Article  PubMed  PubMed Central  Google Scholar 

  56. Olad A, Doustdar F, Gharekhani H (2020) Fabrication and characterization of a starch-based superabsorbent hydrogel composite reinforced with cellulose nanocrystals from potato peel waste. Colloids Surf A Physicochem Eng Aspects. https://doi.org/10.1016/j.colsurfa.2020.124962

    Article  Google Scholar 

  57. Li A, Wang A, Chen J (2004) Studies on poly(acrylic acid)/attapulgite superabsorbent composite. I. Synthesis and characterization. J Appl Polym Sci 92(3):1596–1603. https://doi.org/10.1002/app.20104

    Article  CAS  Google Scholar 

  58. Pourjavadi A, Amini-Fazl MS (2007) Optimized synthesis of carrageenan-graft-poly(sodium acrylate) superabsorbent hydrogel using the Taguchi method and investigation of its metal ion absorption. Polym Int 56(2):283–289. https://doi.org/10.1002/pi.2165

    Article  CAS  Google Scholar 

  59. Elliott JE, Macdonald M, Nie J, Bowman CN (2004) Structure and swelling of poly(acrylic acid) hydrogels: effect of pH, ionic strength, and dilution on the crosslinked polymer structure. Polymer 45(5):1503–1510. https://doi.org/10.1016/j.polymer.2003.12.040

    Article  CAS  Google Scholar 

  60. Thukar S, Arotiba O (2018) Synthesis, characterization and adsorption studies of an acrylic acid-grafted sodium alginate-based TiO2 hydrogel nanocomposite. Adsorpt Sci Technol 36(1–2):458–477. https://doi.org/10.1177/0263617417700636

    Article  CAS  Google Scholar 

  61. Pourjavadi A, Harzandi A, Hosseinzadeh H (2004) Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air. Eur Polym J 40(7):1363–1370. https://doi.org/10.1016/j.eurpolymj.2004.02.016

    Article  CAS  Google Scholar 

  62. Shi W, Dumont MJ, Ly EB (2014) Synthesis and properties of canola protein-based superabsorbent hydrogels. Eur Polym J 54:172–180. https://doi.org/10.1016/j.eurpolymj.2014.03.007

    Article  CAS  Google Scholar 

  63. https://drkarami.com. Accessed on 27 Jan 2024

Download references

Funding

This study was supported by University of Tehran (Grant no. Institutional funds) of authors’ universities. None external funding entity was involved.

Author information

Authors and Affiliations

Authors

Contributions

S.I.: Investigation, Validation, Formal analysis, Writing—Original draft preparation. M.J.: Conceptualization, Validation, Formal analysis. Yahya Hamzeh: Investigation, Validation. B.A.: Supervision, Validation. Andrea Mezzetta: Methodology. L.G.: Methodology, Validation, Writing—Reviewing and editing. P.C.: Visualization. M.S.: Resources, Visualization, Writing—Reviewing and editing. S.D.: Formal analysis, Resources, Supervision, Writing—Reviewing and editing.

Corresponding authors

Correspondence to Mehdi Jonoobi or Serena Danti.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismaeilimoghadam, S., Jonoobi, M., Hamzeh, Y. et al. Development and Characterization of Sodium Alginate-Based Bio-hybrid Super Absorbent Polymer with High Retention Capacity Suitable for Baby Diapers. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03297-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-024-03297-3

Keywords

Navigation