Skip to main content

Advertisement

Log in

Synergistic Enhancement of Mechanical Strength and Antibacterial Activity in 3D Core–Shell Bone Scaffolds Incorporating Phosphate-Modified Pomegranate Peel Powder Within Polylactic Acid/Poly (Glycerol-Succinic Acid) Composite

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Despite the imposing regenerative abilities of bone tissue, accomplishing rapid and successful bone regeneration remains challenging due to the complex back-and-forth of factors influencing the healing process. In bone tissue engineering, the mechanical strength and biocompatibility of 3D polymeric scaffolds, which the former is more challenging for bone tissue, are yet to be an unsolved problem. Herein, 3D cylindrical core–shell scaffolds were fabricated by dual-leaching technique using poly (Glycerol-Succinic Acid) (PGSU) as the sell, in combination with phosphate-modified pomegranate peels powder, and poly lactic acid (PLA). The main objective of developing such scaffolds is not only to improve compressive strength but also to enhance cell viability and antibacterial activity. Overall results confirmed that the developed core–shell scaffold, containing phosphate-modified pomegranate peel powder, on one hand, had an appropriate compressive strength due to the presence of PLA in its core; on the other hand, showed acceptable antibacterial activity for using pomegranate powder. Also, it demonstrated that the surface modification was successfully done. By incorporating phosphate-modified pomegranate peel powder into the core–shell scaffold, compressive strength of almost 6000 Pa was achieved, with a porosity of 90% alongside cell viability of almost 100%, as indicated by the MTT assay. The main reason for the appropriate biological response of the developed scaffold relevant to the biomolecule compounds presented in pomegranate powder, including tannins, phytochemicals, flavonoids, and antioxidants, as well as the presence of phosphate ions. Therefore, as the final perspective, the synergistic effects resulting from the combination of the scaffold's structural properties and the antibacterial properties of phosphate-modified pomegranate powder contribute to its overall effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Nahanmoghadam A, Asemani M, Goodarzi V, Ebrahimi-Barough S (2021) Design and fabrication of bone tissue scaffolds based on PCL/PHBV containing hydroxyapatite nanoparticles: dual-leaching technique. J Biomed Mater Res Part A 109:981–993. https://doi.org/10.1002/jbm.a.37087

    Article  CAS  Google Scholar 

  2. Chen G, Kawazoe N (2018) Porous scaffolds for regeneration of cartilage, bone and osteochondral tissue. Adv Exp Med Biol 1058:171–191. https://doi.org/10.1007/978-3-319-76711-6_8

    Article  CAS  PubMed  Google Scholar 

  3. Rahimi A, Nahanmoghadam A, Ai J, Gholami N, Ebrahimi-Barough R, Ebrahimi-Barough S (2019) Motor neurons differentiation of encapsulated human endometrial stem cells in collagen without HLA-DR expression. J Appl Tissue Eng. https://doi.org/10.22034/JATE.2019.32

    Article  Google Scholar 

  4. Baker B, Trappmann B, Wang W et al (2015) Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nat Mater. https://doi.org/10.1038/nmat444

    Article  PubMed  PubMed Central  Google Scholar 

  5. Metcalfe AD, Ferguson MWJ (2007) Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface 4:413–437. https://doi.org/10.1098/RSIF.2006.0179

    Article  CAS  PubMed  Google Scholar 

  6. Luo Y, Lode A, Wu C et al (2015) Alginate/nanohydroxyapatite scaffolds with designed core/shell structures fabricated by 3D plotting and in situ mineralization for bone tissue engineering. ACS Appl Mater Interfaces 7:6541–6549. https://doi.org/10.1021/am508469h

    Article  CAS  PubMed  Google Scholar 

  7. Shahi S, Karbasi S, Ahmadi T et al (2021) Evaluation of physical, mechanical and biological properties of β-tri-calcium phosphate/Poly-3-hydroxybutyrate nano composite scaffold for bone tissue engineering application. Mater Technol 36:237–249. https://doi.org/10.1080/10667857.2020.1747806

    Article  CAS  Google Scholar 

  8. Kirillova A, Yeazel TR, Asheghali D et al (2021) Fabrication of biomedical scaffolds using biodegradable polymers. Chem Rev 121:11238–11304. https://doi.org/10.1021/acs.chemrev.0c01200

    Article  CAS  PubMed  Google Scholar 

  9. Shojaei MR, Pircheraghi G, Alinoori A (2022) Sustainable SBR/silica nanocomposites prepared using high-quality recycled nanosilica from lead-acid battery separators. J Clean Prod 370:133316. https://doi.org/10.1016/j.jclepro.2022.133316

    Article  CAS  Google Scholar 

  10. Mohammadi M, Pascaud-Mathieu P, Allizond V et al (2020) Robocasting of single and multi-functional calcium phosphate scaffolds and its hybridization with conventional techniques: design, fabrication and characterization. Appl Sci 10:1–22. https://doi.org/10.3390/app10238677

    Article  CAS  Google Scholar 

  11. Faghihi-Rezaei V, Khonkdar HA, Goodarzi V et al (2023) Design and manufacture of 3D-cylindrical scaffolds based on PLA/TPU/n-HA with the help of dual salt leaching technique suggested for use in cancellous bone tissue engineering. J Biomater Sci Polym Ed 34:1430–1452. https://doi.org/10.1080/09205063.2023.2168594

    Article  CAS  PubMed  Google Scholar 

  12. Wang H, Wang E, Huang Y, Li X (2020) Hybrid hydrogel based on stereocomplex PDLA/PLLA and gelatin for bone regeneration. J Appl Polym Sci 137:1–9. https://doi.org/10.1002/app.49571

    Article  CAS  Google Scholar 

  13. Thadavirul N, Pavasant P, Supaphol P (2017) Fabrication and evaluation of polycaprolactone–poly(hydroxybutyrate) or poly(3-hydroxybutyrate-co-3-hydroxyvalerate) dual-leached porous scaffolds for bone tissue engineering applications. Macromol Mater Eng 302:1–17. https://doi.org/10.1002/mame.201600289

    Article  CAS  Google Scholar 

  14. Talouki PY, Tamimi R, Gooadrzi V et al (2022) Polyglycerol sebacate (PGS)-based composite and nanocomposites: properties and applications. Int J Polym Mater Polym Biomater 72:1360–1374. https://doi.org/10.1080/00914037.2022.2097681

    Article  CAS  Google Scholar 

  15. Carnahan MA, Grinstaff MW (2001) Synthesis and characterization of poly(glycerol-succinic acid) dendrimers. Macromolecules 34:7648–7655. https://doi.org/10.1021/ma010848n

    Article  CAS  Google Scholar 

  16. Bengoechea C, Álvarez-Castillo E, Nakiou EA et al (2022) Poly(glycerol succinate) as coating material for 1393 bioactive glass porous scaffolds for tissue engineering applications. Polymers 14:5028. https://doi.org/10.3390/polym14225028

    Article  CAS  Google Scholar 

  17. Jafari A, Fakhri V, Kamrani S et al (2022) Developemt of flexible nanocomposites based on poly(ε-caprolactone) for tissue engineering application: the contributing role of poly(glycerol succinic acid) and polypyrrol. Eur Polym J 164:110984. https://doi.org/10.1016/J.EURPOLYMJ.2021.110984

    Article  CAS  Google Scholar 

  18. Saad H, Charrier-El Bouhtoury F, Pizzi A et al (2012) Characterization of pomegranate peels tannin extractives. Ind Crops Prod 40:239–246. https://doi.org/10.1016/j.indcrop.2012.02.038

    Article  CAS  Google Scholar 

  19. Saad PG, Castelino RD, Ravi V et al (2021) Green synthesis of silver nanoparticles using Omani pomegranate peel extract and two polyphenolic natural products: characterization and comparison of their antioxidant, antibacterial, and cytotoxic activities. Beni-Suef Univ J Basic Appl Sci. https://doi.org/10.1186/s43088-021-00119-6

    Article  Google Scholar 

  20. Ben-Ali S, Jaouali I, Souissi-Najar S, Ouederni A (2017) Characterization and adsorption capacity of raw pomegranate peel biosorbent for copper removal. J Clean Prod 142:3809–3821. https://doi.org/10.1016/j.jclepro.2016.10.081

    Article  CAS  Google Scholar 

  21. Sadek KM, Mamdouh W, Habib SI et al (2021) In vitro biological evaluation of a fabricated polycaprolactone/pomegranate electrospun scaffold for bone regeneration. ACS Omega 6:34447–34459. https://doi.org/10.1021/acsomega.1c04608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Siddiqui S, Arshad M (2014) Osteogenic potential of punica granatum through matrix mineralization, cell cycle progression and runx2 gene expression in primary rat osteoblasts. DARU J Pharm Sci 22:1–8. https://doi.org/10.1186/S40199-014-0072-7/FIGURES/6

    Article  Google Scholar 

  23. Spilmont M, Léotoing L, Davicco MJ et al (2015) Pomegranate peel extract prevents bone loss in a preclinical model of osteoporosis and stimulates osteoblastic differentiation in vitro. Nutrients 7:9265–9284. https://doi.org/10.3390/NU7115465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ghorbani M, Nourani MR, Alizadeh H, Goodarzi V (2022) Evaluation of the growth and differentiation of spermatogonial stem cells on a 3D polycaprolactone/multi-walled carbon nanotubes. J Appl Biotechnol Rep 9:846–855. https://doi.org/10.30491/JABR.2022.312357.1463

    Article  CAS  Google Scholar 

  25. Kheiri Mollaqasem V, Asefnejad A, Nourani MR et al (2021) Incorporation of graphene oxide and calcium phosphate in the PCL/PHBV core-shell nanofibers as bone tissue scaffold. J Appl Polym Sci 138:1–16. https://doi.org/10.1002/app.49797

    Article  CAS  Google Scholar 

  26. Heydari M, Goodarzi V, Shams M et al (2023) The role of copper chromite nanoparticles on physical and bio properties of scaffolds based on poly(glycerol-azelaic acid) for application in tissue engineering fields. Cell Tissue Res 391:357–373. https://doi.org/10.1007/s00441-022-03708-8

    Article  CAS  PubMed  Google Scholar 

  27. Mahtabi R, Benisi SZ, Goodarzi V, Shojaei S (2023) Application of biodegradable bone scaffolds based on poly(lactic acid)/poly(glycerol succinic acid) containing nano-hydroxyapatite. J Polym Environ. https://doi.org/10.1007/s10924-023-02983-y

    Article  Google Scholar 

  28. Shi H, Gan Q, Liu X et al (2015) Poly(glycerol sebacate)-modified polylactic acid scaffolds with improved hydrophilicity, mechanical strength and bioactivity for bone tissue regeneration. RSC Adv 5:79703–79714. https://doi.org/10.1039/C5RA13334C

    Article  CAS  Google Scholar 

  29. Rizwan M, Rubina Gilani S, Iqbal Durani A, Naseem S (2021) Materials diversity of hydrogel: synthesis, polymerization process and soil conditioning properties in agricultural field. J Adv Res 33:15–40. https://doi.org/10.1016/J.JARE.2021.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rizwan M, Gilani SR, Durrani AI, Naseem S (2022) Kinetic model studies of controlled nutrient release and swelling behavior of combo hydrogel using Acer platanoides cellulose. J Taiwan Inst Chem Eng 131:104137. https://doi.org/10.1016/J.JTICE.2021.11.004

    Article  CAS  Google Scholar 

  31. Rizwan M, Naseem S, Gilani SR, Durrani AI (2024) Optimization of swelling and mechanical behavior of Acer platanoides cellulose combo hydrogel. Kuwait J Sci 51:100177. https://doi.org/10.1016/J.KJS.2024.100177

    Article  Google Scholar 

  32. Naseem S, Durrani AI, Rizwan M et al (2024) Sono-Microwave Assisted Chlorine free and Ionic Liquid (SMACIL) extraction of cellulose from Urtica dioica: a benign to green approach. Int J Biol Macromol 259:129059. https://doi.org/10.1016/J.IJBIOMAC.2023.129059

    Article  CAS  PubMed  Google Scholar 

  33. Rizwan M, Gilani SR, Durrani AI, Naseem S (2021) Low temperature green extraction of Acer platanoides cellulose using nitrogen protected microwave assisted extraction (NPMAE) technique. Carbohydr Polym 272:118465. https://doi.org/10.1016/J.CARBPOL.2021.118465

    Article  CAS  PubMed  Google Scholar 

  34. Du Y, Yu M, Lu W, Kong J (2021) Three-dimensional (3D), macroporous, elastic, and biodegradable nanocomposite scaffold for in situ bone regeneration: toward structural, biophysical, and biochemical cues integration. Compos Part B Eng 225:109270. https://doi.org/10.1016/j.compositesb.2021.109270

    Article  CAS  Google Scholar 

  35. Alam J, Alhoshan M, Shukla A et al (2019) k-Carrageenan—a versatile biopolymer for the preparation of a hydrophilic PVDF composite membrane. Eur Polym J. https://doi.org/10.1016/j.eurpolymj.2019.109219

    Article  Google Scholar 

  36. Correia TR, Figueira DR, de Sá KD et al (2016) 3D printed scaffolds with bactericidal activity aimed for bone tissue regeneration. Int J Biol Macromol 93:1432–1445. https://doi.org/10.1016/j.ijbiomac.2016.06.004

    Article  CAS  PubMed  Google Scholar 

  37. Jithendra P, Rajam AM, Kalaivani T et al (2013) Preparation and characterization of aloe vera blended Collagen-Chitosan composite scaffold for tissue engineering applications. ACS Appl Mater Interfaces 5:7291–7298. https://doi.org/10.1021/AM401637C/SUPPL_FILE/AM401637C_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  38. Mahdavi R, Zahedi P, Goodarzi V (2024) Application of poly(glycerol itaconic acid) (PGIt) and poly(ɛ-caprolactone) diol (PCL-diol) as macro crosslinkers containing cloisite Na+ to application in tissue engineering. J Polym Environ. https://doi.org/10.1007/S10924-023-03162-9/METRICS

    Article  Google Scholar 

  39. Mohammadi A, Salimi A, Goodarzi V et al (2024) Synthesis and characterization of pegylated poly(glycerol azelaic acid) and their nanocomposites for application in tissue engineering. J Polym Environ. https://doi.org/10.1007/S10924-024-03194-9/METRICS

    Article  Google Scholar 

  40. Rostamian M, Kalaee MR, Dehkordi SR et al (2020) Design and characterization of poly(glycerol-sebacate)-co-poly(caprolactone) (PGS-co-PCL) and its nanocomposites as novel biomaterials: the promising candidate for soft tissue engineering. Eur Polym J. https://doi.org/10.1016/J.EURPOLYMJ.2020.109985

    Article  Google Scholar 

  41. Farjaminejad S, Shojaei S, Goodarzi V et al (2021) Tuning properties of bio-rubbers and its nanocomposites with addition of succinic acid and ɛ-caprolactone monomers to poly(glycerol sebacic acid) as main platform for application in tissue engineering. Eur Polym J 159:110711. https://doi.org/10.1016/j.eurpolymj.2021.110711

    Article  CAS  Google Scholar 

  42. Valerio O, Misra M, Mohanty AK (2018) Poly(glycerol-co-diacids) polyesters: from glycerol biorefinery to sustainable engineering applications, a review. ACS Sustain Chem Eng 6:5681–5693. https://doi.org/10.1021/ACSSUSCHEMENG.7B04837

    Article  CAS  Google Scholar 

  43. Hosseini Chenani F, Rezaei VF, Fakhri V et al (2021) Green synthesis and characterization of poly(glycerol-azelaic acid) and its nanocomposites for applications in regenerative medicine. J Appl Polym Sci. https://doi.org/10.1002/APP.50563

    Article  Google Scholar 

  44. Fakhri V, Jafari A, Shafiei MA et al (2021) Development of physical, mechanical, antibacterial and cell growth properties of poly(glycerol sebacate urethane)(PGSU) with helping of curcumin an hydroxyapatite nanoparticles. Polym Chem 12:6263. https://doi.org/10.1039/d1py01040a

    Article  CAS  Google Scholar 

  45. Tashiro K, Kouno N, Wang H, Tsuji H (2017) Crystal structure of poly(lactic acid) stereocomplex: random packing model of PDLA and PLLA chains as studied by X-ray diffraction analysis. Macromolecules 50:8048–8065. https://doi.org/10.1021/acs.macromol.7b01468

    Article  CAS  Google Scholar 

  46. Li X, Wang Y, Guo M et al (2018) Degradable three dimensional-printed polylactic acid scaffold with long-term antibacterial activity. ACS Sustain Chem Eng 6:2047–2054. https://doi.org/10.1021/acssuschemeng.7b03464

    Article  CAS  Google Scholar 

  47. Wang L, Gramlich WM, Gardner DJ (2017) Improving the impact strength of poly(lactic acid) (PLA) in fused layer modeling (FLM). Polymer (Guildf) 114:242–248. https://doi.org/10.1016/j.polymer.2017.03.011

    Article  CAS  Google Scholar 

  48. Valapa RB, Pugazhenthi G, Katiyar V (2015) Effect of graphene content on the properties of poly(lactic acid) nanocomposites. RSC Adv. https://doi.org/10.1039/C4RA15669B

    Article  Google Scholar 

  49. Nakiou EA, Lazaridou M, Pouroutzidou GK et al (2022) Poly(glycerol succinate) as coating material for 1393 bioactive glass porous scaffolds for tissue engineering applications. Polymers (Basel). https://doi.org/10.3390/polym14225028

    Article  PubMed  Google Scholar 

  50. Liu Z, Tang M, Zhao J et al (2018) Looking into the future: toward advanced 3D biomaterials for stem-cell-based regenerative medicine. Adv Mater 30:1705388. https://doi.org/10.1002/ADMA.201705388

    Article  Google Scholar 

  51. Göppert B, Sollich T, Abaffy P et al (2016) Superporous poly(ethylene glycol) diacrylate cryogel with a defined elastic modulus for prostate cancer cell research. Small 12:3985–3994. https://doi.org/10.1002/SMLL.201600683

    Article  PubMed  Google Scholar 

  52. Gao L, McCarthy TJ (2008) Teflon is hydrophilic. Comments on definitions of hydrophobic, shear versus tensile hydrophobicity, and wettability characterization. Langmuir 24:9183–9188. https://doi.org/10.1021/LA8014578

    Article  CAS  PubMed  Google Scholar 

  53. Zhang S, Jiang G, Prabhakaran M et al (2023) Evaluation of electrospun biomimetic substrate surface-decorated with nanohydroxyapatite precipitation for osteoblasts behavior. J Polym Environ. https://doi.org/10.1007/s10924-023-02983-y

    Article  Google Scholar 

  54. Park S-J, Kim J-S (2000) Role of chemically modified carbon black surfaces in enhancing interfacial adhesion between carbon black and rubber in a composite system. J Colloid Interface Sci. https://doi.org/10.1006/jcis.2000.7160

    Article  PubMed  Google Scholar 

  55. Golbaten-Mofrad H, Seyfi Sahzabi A, Seyfikar S et al (2021) Facile template preparation of novel electroactive scaffold composed of polypyrrole-coated poly(glycerol-sebacate-urethane) for tissue engineering applications. Eur Polym J 159:110749. https://doi.org/10.1016/J.EURPOLYMJ.2021.110749

    Article  CAS  Google Scholar 

  56. García-González CA, Barros J, Rey-Rico A et al (2018) Antimicrobial properties and osteogenicity of vancomycin-loaded synthetic scaffolds obtained by supercritical foaming. ACS Appl Mater Interfaces 10:3349–3360. https://doi.org/10.1021/ACSAMI.7B17375

    Article  PubMed  Google Scholar 

  57. Ibrahim DM, Sani ES, Soliman AM et al (2020) Bioactive and elastic nanocomposites with antimicrobial properties for bone tissue regeneration. ACS Appl Bio Mater 3:3313–3325. https://doi.org/10.1021/ACSABM.0C00250/SUPPL_FILE/MT0C00250_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  58. Karabulut H, Ulag S, Dalbayrak B et al (2023) A novel approach for the fabrication of 3D-printed dental membrane scaffolds including antimicrobial pomegranate extract. Pharm 15:737. https://doi.org/10.3390/PHARMACEUTICS15030737

    Article  CAS  Google Scholar 

  59. Hobbi P, Okoro OV, Nie L, Shavandi A (2023) Fabrication of bioactive polyphenolic biomaterials for bone tissue engineering. Mater Today Sustain 24:100541. https://doi.org/10.1016/J.MTSUST.2023.100541

    Article  Google Scholar 

  60. Talouki PY, Tackallou SH, Shojaei S et al (2023) The role of three-dimensional scaffolds based on polyglycerol sebacate/polycaprolactone/gelatin in the presence of Nanohydroxyapatite in promoting chondrogenic differentiation of human adipose-derived mesenchymal stem cells. Biol Proced Online 25:1–17. https://doi.org/10.1186/s12575-023-00197-z

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Mohammadreza Shojaei: Investigation, Writing, Visualization, Writing- Original draft preparation; Davood Bizari: Conceptualization, Investigation, data collection; Shahrokh Shojaei: Conceptualization, Investigation, data collection; Pedram Tehrani: Conceptualization, Investigation, data collection; Mohsen Korani: Conceptualization, Investigation, data collection; Lokman Uzun: Conceptualization, Supervision, Reviewing and Editing; Wei-Hsin Chen: Conceptualization, Supervision, Reviewing and Editing; Vahabodin Goodarzi: Conceptualization, Supervision, Reviewing and Editing.

Corresponding author

Correspondence to Vahabodin Goodarzi.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Supplementary file2 (AVI 2190 KB)

Supplementary file3 (AVI 2489 KB)

Supplementary file4 (AVI 2104 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shojaei, M., Bizari, D., Shojaei, S. et al. Synergistic Enhancement of Mechanical Strength and Antibacterial Activity in 3D Core–Shell Bone Scaffolds Incorporating Phosphate-Modified Pomegranate Peel Powder Within Polylactic Acid/Poly (Glycerol-Succinic Acid) Composite. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03296-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-024-03296-4

Keywords

Navigation