Skip to main content
Log in

Degradation Behavior of Poly (Lactic Acid) during Accelerated Photo-Oxidation: Insights into Structural Evolution and Mechanical Properties

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Poly (lactic acid) (PLA) has received considerable attention as a sustainable and biodegradable alternative to petroleum-based polymers in recent years. In general, the properties of PLA depend on its molecular chain structure, e.g., linear, branched, and aggregated structure, e.g., orthorhombic α-form and stereocomplex crystals. However, the evolution of hierarchical structure triggered by photo-oxidation degradation remain elusive for PLA. Herein, the accelerated photo-oxidation degradation behaviors of PLA samples with different thermal histories, including quenching (PLA-q), slow cooling (PLA-c), and annealing (PLA-a), were investigated by several characterization techniques. Compared to PLA-q and PLA-c, PLA-a exhibits relatively lower rates of molecular chain scission and oxygen-containing groups generation during the accelerated photo-oxidation process, suggesting that the increase in crystallinity contributes to suppressing the degradation of PLA. Changes in the molecular chain structure leads to the evolution of aggregation structure. The crystallinity of PLA samples, whether slowly cooled or annealed, increases with UV exposure time, which is attributed to the newly-formed crystals induced by chemi-crystallization. Unexpectedly, although PLA-a exhibits a slower photo-oxidation degradation rate than PLA-q and PLA-c, it undergoes embrittlement at an earlier stage. Morphological observations of photo-oxidized samples indicate that the degradation reaction of PLA-a occurs preferentially in the amorphous region, transforming the molecular chains into volatile products and eventually resulting in the embrittlement of PLA materials. This research sheds light on photo-oxidation degradation behaviors of PLA, and will serve as a valuable reference for investigating the degradation of other bio-based polymeric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen GQ, Patel MK (2012) Plastics derived from biological sources: present and future: a technical and environmental review. Chem Rev 112:2082–2099

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications - a comprehensive review. Adv Drug Deliv Rev 107:367–392

    Article  CAS  PubMed  Google Scholar 

  3. Inkinen S, Hakkarainen M, Albertsson AC, Sodergard A (2011) From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules 12:523–532

    Article  CAS  PubMed  Google Scholar 

  4. Haider TP, Volker C, Kramm J, Landfester K, Wurm FR (2019) Plastics of the future? The impact of biodegradable polymers on the Environment and on Society. Angew Chem Int Ed Engl 58:50–62

    Article  CAS  PubMed  Google Scholar 

  5. Lambert S, Wagner M (2017) Environmental performance of bio-based and biodegradable plastics: the road ahead. Chem Soc Rev 46:6855–6871

    Article  CAS  PubMed  Google Scholar 

  6. Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852

    Article  CAS  Google Scholar 

  7. Jalali A, Romero-Diez S, Nofar M, Park CB (2021) Entirely environment-friendly polylactide composites with outstanding heat resistance and superior mechanical performance fabricated by spunbond technology: exploring the role of nanofibrillated stereocomplex polylactide crystals. Int J Biol Macromol 193:2210–2220

    Article  CAS  PubMed  Google Scholar 

  8. Freeland B, McCarthy E, Balakrishnan R, Fahy S, Boland A, Rochfort KD, Dabros M, Marti R, Kelleher SM, Gaughran J (2022) A review of Polylactic Acid as a replacement material for single-use Laboratory Components. Materials 15:2989

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jalali A, Huneault MA, Nofar M, Lee PC, Park CB (2019) Effect of branching on flow-induced crystallization of poly (lactic acid). Eur Polym J 119:410–420

    Article  CAS  Google Scholar 

  10. Mehrabi Mazidi M, Edalat A, Berahman R, Hosseini FS (2018) Highly-toughened Polylactide- (PLA-) based Ternary blends with significantly enhanced Glass Transition and Melt Strength: tailoring the interfacial interactions, phase morphology, and performance. Macromolecules 51:4298–4314

    Article  ADS  CAS  Google Scholar 

  11. Jalali A, Huneault MA, Elkoun S (2016) Effect of thermal history on nucleation and crystallization of poly(lactic acid). J Mater Sci 51:7768–7779

    Article  ADS  CAS  Google Scholar 

  12. Nagarajan V, Mohanty AK, Misra M (2016) Perspective on Polylactic Acid (PLA) based sustainable materials for durable applications: Focus on Toughness and Heat Resistance. ACS Sustainable Chem Eng 4:2899–2916

    Article  CAS  Google Scholar 

  13. González-López ME, Martín del Campo AS, Robledo-Ortíz JR, Arellano M, Pérez-Fonseca AA (2020) Accelerated weathering of poly(lactic acid) and its biocomposites: a review. Polym Degrad Stab 179:109290

    Article  Google Scholar 

  14. Tripathi N, Misra M, Mohanty AK (2021) Durable polylactic acid (PLA)-based sustainable engineered blends and biocomposites: recent developments, challenges, and opportunities. ACS Eng Au 1:7–38

    Article  CAS  Google Scholar 

  15. Atalay SE, Bezci B, Özdemir B, Göksu YA, Ghanbari A, Jalali A, Nofar M (2021) Thermal and environmentally Induced Degradation behaviors of Amorphous and Semicrystalline PLAs through Rheological Analysis. J Polym Environ 29:3412–3426

    Article  CAS  Google Scholar 

  16. Zaaba NF, Jaafar M (2020) A review on degradation mechanisms of polylactic acid: Hydrolytic, photodegradative, microbial, and enzymatic degradation. Polym Eng Sci 60:2061–2075

    Article  CAS  Google Scholar 

  17. Lila MK, Shukla K, Komal UK, Singh I (2019) Accelerated thermal ageing behaviour of bagasse fibers reinforced poly (lactic acid) based biocomposites. Compos Part B: Eng 156:121–127

    Article  CAS  Google Scholar 

  18. Ndazi BS, Karlsson S (2011) Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures. Express Polym Lett 5:119–131

    Article  CAS  Google Scholar 

  19. Copinet A, Bertrand C, Govindin S, Coma V, Couturier Y (2004) Effects of ultraviolet light (315 nm), temperature and relative humidity on the degradation of polylactic acid plastic films. Chemosphere 55:763–773

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Jamshidi K, Hyon SH, Ikada Y (1988) Thermal characterization of polylactides. Polymer 29:2229–2234

    Article  CAS  Google Scholar 

  21. Cam D, Marucci M (1997) Influence of residual monomers and metals on poly (l-lactide) thermal stability. Polymer 38:1879–1884

    Article  CAS  Google Scholar 

  22. Zhou Q, Xanthos M (2008) Nanoclay and crystallinity effects on the hydrolytic degradation of polylactides. Polym Degrad Stab 93:1450–1459

    Article  CAS  Google Scholar 

  23. Chávez-Montes W, González-Sánchez G, López-Martínez E, de Lira-Gómez P, Ballinas-Casarrubias L, Flores-Gallardo S (2015) Effect of Artificial Weathering on PLA/Nanocomposite Molecular Weight distribution. Polymers 7:760–776

    Article  Google Scholar 

  24. Tsuji H, Sugiyama H, Sato Y (2012) Photodegradation of poly(lactic acid) stereocomplex by UV-Irradiation. J Polym Environ 20:706–712

    Article  CAS  Google Scholar 

  25. Han W, Luo C, Yang Y, Ren J, Xuan H, Ge L (2018) Free-standing polylactic acid/chitosan/molybdenum disulfide films with controllable visible-light photodegradation. Colloid Surf A 558:488–494

    Article  CAS  Google Scholar 

  26. Hardy C, Kociok-Kohn G, Buchard A (2022) UV degradation of poly(lactic acid) materials through copolymerisation with a sugar-derived cyclic xanthate. Chem Commun 58:5463–5466

    Article  CAS  Google Scholar 

  27. Lv Y, Huang Y, Yang J, Kong M, Yang H, Zhao J, Li G (2015) Outdoor and accelerated laboratory weathering of polypropylene: a comparison and correlation study. Polym Degrad Stab 112:145–159

    Article  CAS  Google Scholar 

  28. Pospíšil J, Pilař J, Billingham NC, Marek A, Horák Z, Nešpůrek S (2006) Factors affecting accelerated testing of polymer photostability. Polym Degrad Stab 91:417–422

    Article  Google Scholar 

  29. Litauszki K, Kovács Z, Mészáros L, Kmetty Á (2019) Accelerated photodegradation of poly(lactic acid) with weathering test chamber and laser exposure – A comparative study. Polym Test 76:411–419

    Article  CAS  Google Scholar 

  30. Wu H, Zhao Y, Dong X, Su L, Wang K, Wang D (2021) Probing into the microstructural evolution of isotactic polypropylene during photo-oxidation degradation. Polym Degrad Stab 183:109434

    Article  CAS  Google Scholar 

  31. Zaidi L, Kaci M, Bruzaud S, Bourmaud A, Grohens Y (2010) Effect of natural weather on the structure and properties of polylactide/Cloisite 30B nanocomposites. Polym Degrad Stab 95:1751–1758

    Article  CAS  Google Scholar 

  32. Gardette M, Thérias S, Gardette J-L, Murariu M, Dubois P (2011) Photooxidation of polylactide/calcium sulphate composites. Polym Degrad Stab 96:616–623

    Article  CAS  Google Scholar 

  33. Bocchini S, Fukushima K, Blasio AD, Fina A, Frache A, Geobaldo F (2010) Polylactic acid and polylactic acid-based nanocomposite photooxidation. Biomacromolecules 11:2919–2926

    Article  CAS  PubMed  Google Scholar 

  34. Ikada E (1997) Photo- and bio-degradable polyesters. Photodegradation behaviors of aliphatic polyesters. J Photopolym Sci Technol 10:265–270

    Article  CAS  Google Scholar 

  35. Liu Q, Liu S, Xia L, Hu P, Lv Y, Liu J, Chen Z, Huang Y, Li G (2019) Effect of annealing-induced microstructure on the photo-oxidative degradation behavior of isotactic polypropylene. Polym Degrad Stab 162:180–195

    Article  CAS  Google Scholar 

  36. Jalali A, Huneault MA, Elkoun S (2017) Effect of molecular weight on the nucleation efficiency of poly(lactic acid) crystalline phases. J Polym Res 24

  37. Wu H, Zhao Y, Su L, Wang K, Dong X, Wang D (2021) Markedly improved photo-oxidation stability of α form isotactic polypropylene with nodular morphology. Polym Degrad Stab 189:109595

    Article  CAS  Google Scholar 

  38. Höhne GWH (2002) Another approach to the Gibbs–Thomson equation and the melting point of polymers and oligomers. Polymer 43:4689–4698

    Article  Google Scholar 

  39. Rabello MS, White JR (1997) Crystallization and melting behaviour of photodegraded polypropylene — II. Re-crystallization of degraded molecules. Polymer 38:6389–6399

    Article  CAS  Google Scholar 

  40. Gao T, Zhang ZM, Li L, Bao RY, Liu ZY, Xie BH, Yang MB, Yang W (2018) Tailoring crystalline morphology by high-efficiency nucleating Fiber: toward high-performance poly(l-lactide) biocomposites. ACS Appl Mater Interfaces 10:20044–20054

    Article  CAS  PubMed  Google Scholar 

  41. Fayolle B, Richaud E, Colin X, Verdu J (2008) Review: degradation-induced embrittlement in semi-crystalline polymers having their amorphous phase in rubbery state. J Mater Sci 43:6999–7012

    Article  ADS  CAS  Google Scholar 

  42. Hsu Y-C, Weir MP, Truss RW, Garvey CJ, Nicholson TM, Halley PJ (2012) A fundamental study on photo-oxidative degradation of linear low density polyethylene films at embrittlement. Polymer 53:2385–2393

    Article  CAS  Google Scholar 

  43. Croll SG (2022) Stress and embrittlement in organic coatings during general weathering exposure: a review. Prog Org Coat 172:107085

    Article  CAS  Google Scholar 

  44. Bai H, Huang C, Xiu H, Zhang Q, Fu Q (2014) Enhancing mechanical performance of polylactide by tailoring crystal morphology and lamellae orientation with the aid of nucleating agent. Polymer 55:6924–6934

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from the Shandong Provincial Natural Science Foundation (No. ZR2022QB224), National Natural Science Foundation of China (No. 52203120) and Postdoctoral Innovation Talents Support Program of Shandong Province (No. SDBX2022024) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Xueping Liu: Conceptualization, Investigation, Writing - Original Draft. Xiangdong Hua: Formal analysis, Data Curation. Hao Wu: Supervision, Writing - Review & Editing.

Corresponding author

Correspondence to Hao Wu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Hua, X. & Wu, H. Degradation Behavior of Poly (Lactic Acid) during Accelerated Photo-Oxidation: Insights into Structural Evolution and Mechanical Properties. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03211-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-024-03211-x

Keywords

Navigation