Skip to main content
Log in

Synthesis and Characterization of PEGylated Poly(Glycerol Azelaic Acid) and Their Nanocomposites for Application in Tissue Engineering

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, new types of bio-copolymers based on Poly(glycerol azelaic acid) (PGAZ) and Poly(ethylene glycol) (PEG) (Mn=400, 1000, and 2000 gmol−1) were synthesized by melt polycondensation technique. Also, the solution casting method prepared their nanocomposites with 5 wt% of bioactive glass nanoparticles (BG). 1H-NMR and FTIR analysis confirmed that the pre-polymer resins were well synthesized. Crystalline plan (002) of PGAZ-co-PEG1000 and PGAZ-co-PEG2000 are increased compared to other samples. The SEM images of the surface of the samples showed that the increase in the molecular weight of PEG has made the surface morphology rougher, and the presence of nanoparticles causes a layered morphology. Also, the increase in molecular weight in PEG has caused better dispersion of nanoparticles. Among all the samples, the mechanical properties of PGAZ-co-PEG2000/BG were higher than others. The glass transition temperature (Tg) for the PGAZ sample is around 42.16 oC, and by copolymerizing this material with PEG, the Tg values have moved to lower temperatures. The degradation behaviour of PGAZ-co-PEG1000 and its nanocomposites was faster in fetal bovine serum (FBS) moiety. The dynamic contact angle showed that sample PGAZ-co-PEG400 showed the best hydrophilic conditions, and on the other hand, the PGAZ/BG sample behaved better among the nanocomposite samples. The behaviour of cytotoxicity after 72 h showed that the samples PGAZ-co-PEG400/BG and PGAZ-co-PEG2000/BG had better cell maintenance and proliferation. Cell adhesion is more on the surface of nanocomposite samples, and the acridine orange technique also showed that after 16 days, there are cells with very high density on the surface of bio-copolymer nanocomposite samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kim B-S, Baez CE, Atala A (2000) Biomaterials for tissue engineering. World J Urol 18:2–9. https://doi.org/10.1007/s003450050002

    Article  CAS  PubMed  Google Scholar 

  2. Karp JM, Langer R (2007) Development and therapeutic applications of advanced biomaterials. Curr Opin Biotechnol 18:454–459. https://doi.org/10.1016/j.copbio.2007.09.008

    Article  CAS  PubMed  Google Scholar 

  3. Cui G, Li Y, Shi T et al (2013) Synthesis and characterization of Eu(III) complexes of modified cellulose and poly(N-isopropylacrylamide). Carbohydr Polym 94:77–81. https://doi.org/10.1016/j.carbpol.2013.01.045

    Article  CAS  PubMed  Google Scholar 

  4. Xiao Y, Gong W, Zhao M et al (2023) Surface-engineered prussian blue nanozymes as artificial receptors for universal pattern recognition of metal ions and proteins. Sens Actuators B 390:134006. https://doi.org/10.1016/j.snb.2023.134006

    Article  CAS  Google Scholar 

  5. Freier T (2006) Biopolyesters in tissue Engineering Applications. In: Werner C (ed) Polymers for Regenerative Medicine. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1–61

    Google Scholar 

  6. Ikada Y (2006) Challenges in tissue engineering. J Royal Soc Interface 3:589–601. https://doi.org/10.1098/rsif.2006.0124

    Article  CAS  Google Scholar 

  7. Peppas NA, Langer R (1994) New challenges in Biomaterials. Science 263:1715–1720. https://doi.org/10.1126/science.8134835

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Wu Z, Jin K, Wang L, Fan Y (2021) A review: optimization for poly(glycerol sebacate) and fabrication techniques for its centered scaffolds. Macromol Biosci 21:2100022. https://doi.org/10.1002/mabi.202100022

    Article  CAS  Google Scholar 

  9. Mao S-X, Song J-Y, Zhu W-S et al (2023) Heterogeneous oxidative desulfurization of fuels using amphiphilic mesoporous phosphomolybdate-based poly(ionic liquid) over a wide temperature range. Fuel 352:128982. https://doi.org/10.1016/j.fuel.2023.128982

    Article  CAS  Google Scholar 

  10. Lu J, Chen Y, Ding M et al (2022) A 4arm-PEG macromolecule cross-linked chitosan hydrogels as antibacterial wound dressing. Carbohydr Polym 277:118871. https://doi.org/10.1016/j.carbpol.2021.118871

    Article  CAS  PubMed  Google Scholar 

  11. Zheng Y, Liu Y, Guo X et al (2020) Sulfur-doped g-C3N4/rGO porous nanosheets for highly efficient photocatalytic degradation of refractory contaminants. J Mater Sci Technol 41:117–126. https://doi.org/10.1016/j.jmst.2019.09.018

    Article  CAS  Google Scholar 

  12. Li M, Xia Q, Lv S et al (2022) Enhanced CO2 capture for photosynthetic lycopene production in engineered Rhodopseudomonas palustris{,} a purple nonsulfur bacterium. Green Chem 24:7500–7518. https://doi.org/10.1039/D2GC02467E

    Article  CAS  Google Scholar 

  13. Liu L, Tang Y, Liu D (2022) Investigation of future low-carbon and zero-carbon fuels for marine engines from the view of thermal efficiency. Energy Rep 8:6150–6160. https://doi.org/10.1016/j.egyr.2022.04.058

    Article  Google Scholar 

  14. Chen QZ, Bismarck A, Hansen U et al (2008) Characterization of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials. https://doi.org/10.1016/j.biomaterials.2007.09.010

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mollazadeh-Moghaddam K, Rezaei Nejad H, Chen A-Z et al (2019) Fracture-resistant and bioresorbable drug-eluting poly(glycerol sebacate) Coils. Adv Ther 2:1800109. https://doi.org/10.1002/adtp.201800109

    Article  CAS  Google Scholar 

  16. Yousefi Talouki P, Tamimi R, Zamanlui Benisi S et al (2022) Polyglycerol sebacate (PGS)-based composite and nanocomposites: properties and applications. https://doi.org/10.1080/00914037.2022.2097681

  17. Jafari A, Fakhri V, Kamrani S et al (2022) Development of flexible nanocomposites based on poly(ε-caprolactone) for tissue Engineering Application: the contributing role of poly(glycerol succinic acid) and polypyrrole. Eur Polymer J 164:110984. https://doi.org/10.1016/j.eurpolymj.2021.110984

    Article  CAS  Google Scholar 

  18. Golbaten-Mofrad H, Seyfi Sahzabi A, Seyfikar S et al (2021) Facile template preparation of novel electroactive scaffold composed of polypyrrole-coated poly(glycerol-sebacate-urethane) for tissue engineering applications. Eur Polymer J 159:110749. https://doi.org/10.1016/j.eurpolymj.2021.110749

    Article  CAS  Google Scholar 

  19. Rostamian M, Kalaee MR, Dehkordi SR et al (2020) Design and characterization of poly(glycerol-sebacate)-co-poly(caprolactone) (PGS-co-PCL) and its nanocomposites as novel biomaterials: the promising candidate for soft tissue engineering. Eur Polymer J 138:109985. https://doi.org/10.1016/J.EURPOLYMJ.2020.109985

    Article  CAS  Google Scholar 

  20. Hu T, Wu Y, Zhao X et al (2019) Micropatterned, electroactive, and biodegradable poly(glycerol sebacate)-aniline trimer elastomer for cardiac tissue engineering. Chem Eng J 366:208–222. https://doi.org/10.1016/j.cej.2019.02.072

    Article  CAS  Google Scholar 

  21. Chen Q, Liang S, Thouas GA (2011) Synthesis and characterization of poly(glycerol sebacate)-co-lactic acid as surgical sealants. Soft Matter 7:6484–6492. https://doi.org/10.1039/c1sm05350g

    Article  CAS  ADS  Google Scholar 

  22. Wu Y, Wang L, Guo B, Ma X P (2014) Injectable biodegradable hydrogels and microgels based on methacrylated poly(ethylene glycol)-co-poly(glycerol sebacate) multi-block copolymers: synthesis{,} characterization{,} and cell encapsulation. J Mater Chem B 2:3674–3685. https://doi.org/10.1039/C3TB21716G

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y, Wu H, Wang Z et al (2019) Optimized Synthesis of Biodegradable Elastomer PEGylated Poly(glycerol sebacate) and Their Biomedical Application. Polymers  https://doi.org/10.3390/polym11060965

    Article  PubMed  PubMed Central  Google Scholar 

  24. Patel A, Gaharwar AK, Iviglia G et al (2013) Highly elastomeric poly(glycerol sebacate)-co-poly(ethylene glycol) amphiphilic block copolymers. Biomaterials 34:3970–3983. https://doi.org/10.1016/J.BIOMATERIALS.2013.01.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Z, Ma Y, Wang Y et al (2018) Urethane-based low-temperature curing, highly-customized and multifunctional poly(glycerol sebacate)-co-poly(ethylene glycol) copolymers. Acta Biomater 71:279–292. https://doi.org/10.1016/j.actbio.2018.03.011

    Article  CAS  PubMed  Google Scholar 

  26. Hosseini Chenani F, Rezaei VF, Fakhri V et al (2021) Green synthesis and characterization of poly(glycerol-azelaic acid) and its nanocomposites for applications in regenerative medicine. J Appl Polym Sci 138:50563. https://doi.org/10.1002/app.50563

    Article  CAS  Google Scholar 

  27. Heydari M, Goodarzi V, Shams M et al (2023) The role of copper chromite nanoparticles on physical and bio properties of scaffolds based on poly(glycerol-azelaic acid) for application in tissue engineering fields. Cell Tissue Res 391:357–373. https://doi.org/10.1007/s00441-022-03708-8

    Article  CAS  PubMed  Google Scholar 

  28. Sotoudeh A, Darbemamieh G, Goodarzi V et al (2021) Tissue engineering needs new biomaterials: poly(xylitol-dodecanedioic acid)–co-polylactic acid (PXDDA-co-PLA) and its nanocomposites. Eur Polymer J 152:110469. https://doi.org/10.1016/j.eurpolymj.2021.110469

    Article  CAS  Google Scholar 

  29. Farjaminejad S, Shojaei S, Goodarzi V et al (2021) Tuning properties of bio-rubbers and its nanocomposites with addition of succinic acid and ɛ-caprolactone monomers to poly(glycerol sebacic acid) as main platform for application in tissue engineering. Eur Polymer J 159:110711. https://doi.org/10.1016/j.eurpolymj.2021.110711

    Article  CAS  Google Scholar 

  30. Tirgar M, Hosseini H, Jafari M et al (2021) Introducing a flexible drug Delivery System based on poly(glycerol sebacate-Urethane) (PGS-U) and its Nanocomposite: potential application in the Prevention and treatment of oral diseases. J Biomater Sci Polym Ed 0:1–17. https://doi.org/10.1080/09205063.2021.1992588

    Article  CAS  Google Scholar 

  31. Pekdemir ME, Aydin D, Selçuk Pekdemir S et al (2023) Shape memory polymer-based nanocomposites magnetically enhanced with Fe3O4 nanoparticles. J Inorg Organomet Polym Mater 33:1147–1155. https://doi.org/10.1007/s10904-023-02566-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pekdemir S, Özen Öner E, Pekdemir ME et al (2022) An investigation into the influence of C. Moschata leaves Extract on Physicochemical and Biological Properties of Biodegradable PCL/PLA Blend Film. J Polym Environ 30:3645–3655. https://doi.org/10.1007/s10924-022-02460-y

    Article  CAS  Google Scholar 

  33. Pekdemir ME, Kök M, Kanca MS et al (2023) B2O3 reinforced polylactic acid/thermoplastic polyethylene glycol shape memory composites. Polym Adv Technol 34:605–612. https://doi.org/10.1002/pat.5912

    Article  CAS  Google Scholar 

  34. Cheng Z, Guo Z, Fu P et al (2021) New insights into the effects of methane and oxygen on heat/mass transfer in reactive porous media. Int Commun Heat Mass Transfer 129:105652. https://doi.org/10.1016/j.icheatmasstransfer.2021.105652

    Article  CAS  Google Scholar 

  35. Zhao C, Xi M, Huo J et al (2023) Computational design of BC3N2 based single atom catalyst for dramatic activation of inert CO2 and CH4 gasses into CH3COOH with ultralow CH4 dissociation barrier. Chin Chem Lett 34:107213. https://doi.org/10.1016/j.cclet.2022.02.018

    Article  CAS  Google Scholar 

  36. Cui G, Zhao K, You K et al (2020) Synthesis and characterization of phenylboronic acid-containing polymer for glucose-triggered drug delivery+. Sci Technol Adv Mater 21:1–10. https://doi.org/10.1080/14686996.2019.1700394

    Article  CAS  PubMed  Google Scholar 

  37. Monem M, Ahmadi Z, Fakhri V, Goodarzi V (2021) Preparing and characterization of poly(glycerol-sebacic acid-urethane) (PGSU) nanocomposites: clearing role of unmodified and modified clay nanoparticles. J Polym Res 29:25. https://doi.org/10.1007/s10965-021-02866-7

    Article  CAS  Google Scholar 

  38. Seyfikar S, Asgharnejad-laskoukalayeh M, Jafari SH et al (2022) Introducing a new approach to preparing bionanocomposite sponges based on poly(glycerol sebacate urethane) (PGSU) with great interconnectivity and high hydrophilicity properties for application in tissue engineering. Eur Polymer J 173:111239. https://doi.org/10.1016/J.EURPOLYMJ.2022.111239

    Article  CAS  Google Scholar 

  39. Aghajan MH, Panahi-Sarmad M, Alikarami N et al (2020) Using solvent-free approach for preparing innovative biopolymer nanocomposites based on PGS/gelatin. Eur Polymer J. https://doi.org/10.1016/j.eurpolymj.2020.109720

    Article  Google Scholar 

  40. Ma Y, Zhang W, Wang Z et al (2016) PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity. Acta Biomater 44:110–124. https://doi.org/10.1016/J.ACTBIO.2016.08.023

    Article  CAS  PubMed  Google Scholar 

  41. Golbaten-Mofrad H, Salehi MH, Jafari SH et al (2022) Preparation and properties investigation of biodegradable poly (glycerol sebacate-co-gelatin) containing nanoclay and graphene oxide for soft tissue engineering applications. J Biomedical Mater Res Part B: Appl Biomaterials 110:2241–2257. https://doi.org/10.1002/jbm.b.35073

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

AM: Investigation, visualization, resources, Writing original draft. AS: Conceptualization, supervision, project administration, review &; editing. VG: Conceptualization, project administration, supervision, review &; editing. MK: Supervision, review &; editing. MF: Supervision, review &; editing.

Corresponding authors

Correspondence to Ali Salimi or Vahabodin Goodarzi.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, A., Salimi, A., Goodarzi, V. et al. Synthesis and Characterization of PEGylated Poly(Glycerol Azelaic Acid) and Their Nanocomposites for Application in Tissue Engineering. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03194-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-024-03194-9

Keywords

Navigation