Skip to main content
Log in

κ-Carrageenan Hydrogels as a Sustainable Alternative for Controlled Release of New Biodegradable Molecules with Antimicrobial Activities

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The main objective of the present study was to develop κ-Carragenan (κ-CG) hydrogels by ionic crosslinking, using KCl and NaCl as crosslinkers, as medium controlled releasing of four new cleavable surfactants with antimicrobial activities (C10-MET; C14-MET; C10-BEN and C14-BEN) used as model drugs. The effect of the κ-CG amount on swelling behavior, morphological properties and load/release capacity of surfactants from hydrogels were investigated. The most efficient swelling result was observed for the sample containing a low ratio κ-CG/crosslinker when the swelling medium was distilled water. The hydrogels showed porous structure and elastic solid behavior in the analyzed temperature range (20–200 °C); and were able to load the four drugs by the classic entrapment method. The release results were closely related to the swelling values of the hydrogels and the solubility of the drug in the release medium. It was found that the drug release increased with time, reaching its maximum after 24 h, and C10-MET exhibited the highest percent release. The results of the present work indicate that the κ-CG hydrogels are good support materials for controlled release, with excellent swelling capacity (> 200%), which is a very important property for applications in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Anastas P, Warner J (1998) Principles of green chemistry; Green chemistry: theory and practice. Oxford

  2. Kharissova O, Dias H, Kharisov B, Pérez B, Pérez V (2013) The greener synthesis of nanoparticles. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2013.01.003

    Article  PubMed  Google Scholar 

  3. Parveen K, Banse V, Ledwani L (2016) Green synthesis of nanoparticles: their advantages and disadvantages. AIP Conf Proc. https://doi.org/10.1063/1.4945168

    Article  Google Scholar 

  4. Kobayashi S (2017) Green polymer chemistry: new methods of polymer synthesis using renewable starting materials. Struct Chem. https://doi.org/10.1007/s11224-016-0861-3

    Article  Google Scholar 

  5. Kharissova O, Kharisov B, Oliva González C, Méndez Y, López I (2019) Greener synthesis of chemical compounds and materials. R Soc Open Sci. https://doi.org/10.1098/rsos.191378

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gowariker V, Viswanathan N, Shreedhar J (2005) Polymer Science. New Age International, New Delhi

    Google Scholar 

  7. Doppalapudi S, Katiyar S, Domb A, Khan W (2014). Adv Polym Med. https://doi.org/10.1007/978-3-319-12478-0

    Article  Google Scholar 

  8. Albuquerque P, Coelho L, Teixeira J, Carneiro-da-Cunha M (2016) Review approaches in biotechnological applications of natural polymers. AIMS Mol Sci. https://doi.org/10.3934/molsci.2016.3.386

    Article  Google Scholar 

  9. Kaushik K, Sharma R, Agarwal S (2016) Natural Polymers and their applications. Int J Pharm Sci Rev Res 37(2):30–36

    CAS  Google Scholar 

  10. Ali A, Ahmed S (2018) Recent advances in edible polymer based hydrogels as a sustainable alternative to conventional polymers. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.8b01052

    Article  PubMed  Google Scholar 

  11. Kouhi M, Prabhakaran M, Ramakrishn S (2020) Edible polymers: an insight into its application in food, biomedicine and cosmetics. Trends Food Sci Technol. https://doi.org/10.1016/j.tifs.2020.05.025

    Article  Google Scholar 

  12. Tapdiqov S (2020) A drug-loaded gel based on graft radical co-polymerization of Nvinylpyrrolidone and 4-Vinylpyridine with Chitosan. Cellul Chem Technol. https://doi.org/10.35812/CelluloseChemTechnol.2020.54.44

    Article  Google Scholar 

  13. Garcia V, Gonzalez V, Gugliotta L (2019) N, N-dimethylacrylamide hydrogels for controlled drug delivery: influence of network structure and drug solubility on the load and release mechanisms. Lat Am Appl Res. https://doi.org/10.52292/j.laar.2019.365

    Article  Google Scholar 

  14. George J, Hsu C, Nguyen L, Ye H, Cui Z (2019) Neural tissue engineering with structured hydrogels in CNS models and therapies. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2019.03.009

    Article  PubMed  Google Scholar 

  15. Gubaidullin A, Makarova A, Derkach S, Voron’ko N, Kadyirov A, Ziganshina S, Salnikov V, Zueva O, Zuev Y (2022) Modulation of molecular structure and mechanical properties of κ-carrageenan-gelatin hydrogel with multi-walled carbon nanotubes. Polymers. https://doi.org/10.3390/polym14122346

    Article  PubMed  PubMed Central  Google Scholar 

  16. Peppas N, Huang Y, Torres-Lugo M, Ward J, Zhang J (2000) Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng. https://doi.org/10.1146/annurev.bioeng.2.1.9

    Article  PubMed  Google Scholar 

  17. Lee K, Mooney D (2001) Hydrogels for tissue engineering. Chem Rev. https://doi.org/10.1021/cr000108x

    Article  PubMed  Google Scholar 

  18. Zhao S, Ma D, Zhang L (2006) New semi-interpenetrating network hydrogels: synthesis, characterization and properties. Macromol Biosci 1:2. https://doi.org/10.1002/mabi.200600011

    Article  CAS  Google Scholar 

  19. Peppas N, Hilt J, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater. https://doi.org/10.1002/adma.200501612

    Article  Google Scholar 

  20. Ahmed E (2015) Hydrogel: Preparation, characterization, and applications: a review. J Adv Res. https://doi.org/10.1016/j.jare.2013.07.006

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fu J (2018) Strong and tough hydrogels crosslinked by multi-functional polymer colloids. J Polym Sci Part B. https://doi.org/10.1002/polb.24728

    Article  Google Scholar 

  22. Bashir S, Hina M, Iqbal J, Rajpar A, Mujtaba M, Alghamdi N, Wageh S, Ramesh K, Ramesh S (2020) Fundamental concepts of hydrogels: synthesis, properties, and their applications. Polymers. https://doi.org/10.3390/polym12112702

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bustamante-Torres M, Romero-Fierro D, Arcentales-Vera B, Palomino K, Magaña H, Bucio E (2021) Hydrogels classification according to the physical or chemical interactions and as stimuli-sensitive materials. Gels. https://doi.org/10.3390/gels7040182

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tapdiqov S (2021) The bonding nature of the chemical interaction between trypsin and chitosan based carriers in immobilization process depend on entrapped method: a review. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2021.05.059

    Article  Google Scholar 

  25. Tapdiqov S (2021) Electrostatic and hydrogen bond immobilization of trypsine onto pH-sensitive N-vinylpyrrolidone and 4-vinylpyridine radical co-grafted chitosan based on hydrogel. Macromol Res. https://doi.org/10.1007/s13233-021-9015-6

    Article  Google Scholar 

  26. Coviello T, Matricardi P, Marianecci C, Alhaique F (2007) Polysaccharide hydrogels for modified release formulations. J Controlled Release. https://doi.org/10.1016/j.jconrel.2007.01.004

    Article  Google Scholar 

  27. Campo V, Kawano D, da Silva Jr BD, Carvalho I (2009) Carrageenans: biological properties, chemical modifications and structural analysis—a review. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2009.01.020

    Article  Google Scholar 

  28. Jiao G, Yu G, Zhang J, Ewart H (2011) Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs. https://doi.org/10.3390/md9020196

    Article  PubMed  PubMed Central  Google Scholar 

  29. Necas J, Bartosikova L (2013) Carrageenan: a review. Vet Med. https://doi.org/10.17221/6758-VETMED

    Article  Google Scholar 

  30. Pulat M, Yoltay N (2016) Smart fertilizers: preparation and characterization of gelatin-based hydrogels for controlled release of MAP and AN fertilizers. Agrochimica. https://doi.org/10.12871/00021857201641

    Article  Google Scholar 

  31. Rehman W, Majeed A, Rani P, Saini K, Najar R, Mehra R, Singh A, Bast F (2016) In: Saiqa (Ed) Natural Polymers: Derivatives, Blends and Composites. New Delhi, India

  32. Qureshi D, Nayak S, Maji S, Kim D, Banerjee I, Pal K (2019) Carrageenan: A Wonder Polymer from Marine Algae for Potential Drug Delivery Applications. Curr Pharm Des. https://doi.org/10.2174/1381612825666190425190754

    Article  PubMed  Google Scholar 

  33. Pacheco-Quito E, Ruiz-Caro R, Veiga M (2020) Carrageenan: Drug Delivery Systems and Other Biomedical Applications. Mar Drugs. https://doi.org/10.3390/md18110583

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li L, Ni R, Shao Y, Mao S (2014) Carrageenan and its applications in drug delivery. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2013.12.008

    Article  PubMed  PubMed Central  Google Scholar 

  35. BeMiller J (2019) Carbohydrate chemistry for food scientists. AACC International Press, London

    Google Scholar 

  36. Shavit U, Reiss M, Shaviv A (2003) Wetting mechanism of gel based controlled-released fertilizers. JCR. https://doi.org/10.1016/s0168-3659(02)00455-8

    Article  Google Scholar 

  37. Huppert H, Sparks R (2006) Extreme natural hazards: population growth, globalization and environmental change. Philos Trans R Soc A 1:2. https://doi.org/10.1098/rsta.2006.1803

    Article  Google Scholar 

  38. Wu S, Mickley L, Jacob D, Rind D, Streets D (2008) Effects of 2000–2050 changes in climate and emissions on global tropospheric ozone and the policy-relevant background surface ozone in the United States. J Geophys Res. https://doi.org/10.1029/2007JD009639

    Article  Google Scholar 

  39. Cong Z, Yazhen S, Changwen D, Jianmin Z, Huoyan W, Xiaoqin C (2010) Evaluation of waterborne coating for controlled-release fertilizer using wurster fluidized bed. Ind Eng Chem Res. https://doi.org/10.1021/ie101239m

    Article  Google Scholar 

  40. Pulat M, Akalin G (2013) Preparation and characterization of gelatin hydrogel support for immobilization of Candida Rugosa lipase. Artif Cells Nanomed Biotechnol. https://doi.org/10.3109/10731199.2012.696070

    Article  PubMed  Google Scholar 

  41. Rozo G, Bohorques L, Santamaría J (2019) Controlled release fertilizer encapsulated by a κ-carrageenan hidrogel. Polímeros. https://doi.org/10.1590/0104-1428.02719

    Article  Google Scholar 

  42. Akalin G, Pulat M (2019) Preparation and characterization of κ-carrageenan hydrogel for controlled release of copper and manganese micronutrients. Polym Bull. https://doi.org/10.1007/s00289-019-02800-4

    Article  Google Scholar 

  43. Rizwan M, Gilani S, Durani A, Naseem S (2021) Materials diversity of hydrogel: synthesis, polymerization process and soil conditioning properties in agricultural field. J Adv Res. https://doi.org/10.1016/j.jare.2021.03.007

    Article  PubMed  PubMed Central  Google Scholar 

  44. Liu Y, Wang J, Chen H, Cheng D (2022) Environmentally friendly hydrogel: a review of classification, preparation and application in agriculture. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2022.157303

    Article  PubMed  PubMed Central  Google Scholar 

  45. Krasnopeeva E, Panova G, Yakimansky A (2022) Agricultural applications of superabsorbent polymer hydrogels. Int J Mol Sci. https://doi.org/10.3390/ijms232315134

    Article  PubMed  PubMed Central  Google Scholar 

  46. Oladosu Y, Rafii M, Arolu F, Chukwu S, Salisu M, Fagbohun I, Muftaudeen T, Swaray S, Haliru B (2022) Superabsorbent polymer hydrogels for sustainable agriculture: a review. Horticulturae. https://doi.org/10.3390/horticulturae8070605

    Article  Google Scholar 

  47. Gilbert E, Guastavino J, Gutierrez C, Lancelle M, Russell-White K, Murguía M (2021) Synthesis and properties of new cleavable cationic surfactants containing carbonate groups. J Surfact Deterg. https://doi.org/10.1002/jsde.12507

    Article  Google Scholar 

  48. Gilbert E, Guastavino J, Nicollier R, Lancelle M, Russell-White K, Murguía M (2021) Synthesis and properties of cleavable quaternary ammonium compounds. J Oleo Sci. https://doi.org/10.5650/jos.ess20216

    Article  PubMed  Google Scholar 

  49. Jain E, Kumar A (2009) Designing Supermacroporous cryogels based on polyacrylonitrile and a polyacrylamide-chitosan semi-interpenetrating network. J Biomater Sci Polym Ed. https://doi.org/10.1163/156856209X444321

    Article  PubMed  Google Scholar 

  50. Croitoru C, Pop M, Bedo T, Cosnita M, Roata I, Hulka I (2000) Physically crosslinked poly (vinyl alcohol)/kappa-carrageenan hydrogels: structure and applications. Polymers. https://doi.org/10.3390/polym12030560

    Article  Google Scholar 

  51. Malana M, Zohra R (2013) The release behavior and kinetic evaluation of tramadol HCl from chemically crosslinked Ter polymeric hydrogels. Daru. https://doi.org/10.1186/2008-2231-21-10

    Article  PubMed  PubMed Central  Google Scholar 

  52. Peppas N, Bunes P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. https://doi.org/10.1016/s0939-6411(00)00090-4

    Article  PubMed  Google Scholar 

  53. Primo G, GarciaManzano M, Romero M, AlvarezIgarzabal C (2015) Synthesis and characterization of hydrogels from 1-vinylimidazole. Highly resistant co-polymers with synergistic effect. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2015.01.027

    Article  Google Scholar 

  54. Peppas N, Khare A (1993) Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv Drug Deliv Rev. https://doi.org/10.1016/0169-409X(93)90025-Y

    Article  Google Scholar 

  55. Serra L, Doménech J, Peppas N (2006) Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol) hydrogels. Biomaterials. https://doi.org/10.1016/j.biomaterials.2006.06.011

    Article  PubMed  Google Scholar 

  56. Fu Y, Kao W (2010) Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin Drug Deliv. https://doi.org/10.1517/17425241003602259

    Article  PubMed  PubMed Central  Google Scholar 

  57. Siepmann J, Peppas N (2012) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. https://doi.org/10.1016/j.addr.2012.09.028

    Article  Google Scholar 

  58. Rasool A, Ata S, Islam A, Khan R (2019) Fabrication of novel carrageenan based stimuli responsive injectable hydrogels for controlled release of cephradine. RSC Adv. https://doi.org/10.1039/c9ra02130b

    Article  PubMed  PubMed Central  Google Scholar 

  59. Santo V, Frias A, Carida M, Cancedda R, Gomes M, Mano J, Reis R (2009) Carrageenan-based hydrogels for the controlled delivery of PDGF-BB in bone tissue engineering applications. Biomacromolecules. https://doi.org/10.1021/bm8014973

    Article  PubMed  Google Scholar 

  60. Braudo E (2004) Mechanism of galactan gelation. Food Hydrocoll. https://doi.org/10.1016/S0268-005X(09)80056-8

    Article  Google Scholar 

  61. Kelco CP (2004) Product catalogue GENU®; Carrageenan Book; www.cpkelco.com

  62. Gulrez S, Al-Assaf S, Phillips G (2011) Progress in molecular and environmental bioengineering—from analysis and modeling to technology applications. InTechOpen

  63. Rhein-Knudsen N, Ale M, Meyer A (2015) Seaweed hydrocolloid production: an update on enzyme assisted extraction and modification technologies. Mar Drugs. https://doi.org/10.3390/md13063340

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rioux L, Turgeon S (2015) Seaweed carbohydrates. Elsevier Inc., Amsterdam

    Book  Google Scholar 

  65. Graham S, Marina P, Blencowe A (2019) Thermoresponsive polysaccharides and their thermoreversible physical hydrogel networks. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2018.11.053

    Article  PubMed  Google Scholar 

  66. Bui V, Nguyen B, Nicolai T, Renou F (2019) Mixed iota and kappa carrageenan gels in the presence of both calcium and potassium ions. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2019.115107

    Article  PubMed  Google Scholar 

  67. Saidin S, Mobarak N (2020) Hydrogel of kappa-carrageenan as adsorbent for methylene blue. J Mater Sci Technol 5(1):1–12

    Google Scholar 

  68. Khare A, Peppas N (1995) Swelling/deswelling of anionic copolymer gels. Biomaterials. https://doi.org/10.1016/0142-9612(95)91130-Q

    Article  PubMed  Google Scholar 

  69. Lin Y, Liang H, Chung C, Chen M, Sung H (2005) Physically crosslinked alginate/N,O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs. Biomaterials. https://doi.org/10.1016/j.biomaterials.2004.06.011

    Article  PubMed  Google Scholar 

  70. Shahbazi M, Ettelaie R, Rajabzadeh G (2016) Physico-mechanical analysis data in support of compatibility of chitosan/κ-carrageenan polyelectrolyte films achieved by ascorbic acid, and the thermal degradation theory of κ-carrageenan influencing the properties of its blends. Data Brief. https://doi.org/10.1016/j.dib.2016.09.039

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hermansson A, Eriksson E, Jordansson E (1991) Effects of potassium, sodium and calcium on the microstructure and rheologicai behaviour of kappa-carrageenan gels. Carbohydr Polym. https://doi.org/10.1016/0144-8617(91)90115-S

    Article  Google Scholar 

  72. Chew K (1980) Relation between composition and physical properties of carrageenan gums. Thesis for the degree of Master of Science

  73. Mangione M, Giacomazza D, Bulone D, Martorana V, Cavallaro G, San Biagio P (2005) K+ and Na+ effects on the gelation properties of κ-Carrageenan. Biophys Chem. https://doi.org/10.1016/j.bpc.2004.08.005

    Article  PubMed  Google Scholar 

  74. Mangione M, Giacomazza D, Bulone D, Martorana V, San Biagio P (2003) Thermoreversible gelation of κ-Carrageenan: relation between conformational transition and aggregation. Biophys Chem. https://doi.org/10.1016/S0301-4622(02)00341-1

    Article  PubMed  Google Scholar 

  75. Graessley W (1974) Advances in polymer science. Springer, Berlin

    Google Scholar 

  76. Porter R, Johnson J (1966) The entanglement concept in polymer systems. Chem Rev. https://doi.org/10.1021/cr60239a001

    Article  Google Scholar 

  77. Mcleish T (2002) Tube theory of entangled polymer dynamics. Adv Phys. https://doi.org/10.1080/00018730210153216

    Article  Google Scholar 

  78. Puza F, Zheng Y, Han L, Xue L, Cui J (2020) Physical entanglement hydrogels: ultrahigh water content but good toughness and stretchability. Polym Chem. https://doi.org/10.1039/DOPY00294A

    Article  Google Scholar 

  79. Gong J, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater. https://doi.org/10.1002/adma.200304907

    Article  Google Scholar 

  80. Francis S, Kumar M, Varshney L (2004) Radiation synthesis of superabsorbent poly(acrylic acid)–carrageenan hydrogels. Radiat Phys Chem. https://doi.org/10.1016/j.radphyschem.2003.09.004

    Article  Google Scholar 

  81. Bixler H (1994) The carrageenan connection IV. Br Food J. https://doi.org/10.1108/00070709410060763

    Article  Google Scholar 

  82. Sharma S, Dua A, Malik A (2014) Polyaspartic acid based superabsorbent polymers. Eur Polym J. https://doi.org/10.1016/j.eurpolymj.2014.07.043

    Article  Google Scholar 

  83. Nourmohammadi J, Roshanfar F, Farokhi M, Haghbin M (2017) Silk fibroin/kappa -carrageenan composite scaffolds with enhanced biomimetic mineralization for bone regeneration applications. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2017.03.166

    Article  Google Scholar 

  84. Berton S, de Jesus G, Sabino R, Monteiro J, Venter S, Bruschi M, Popat K, Matsushita M, Martins A, Bonafé E (2020) Properties of a commercial κ-carrageenan food ingredient and its durable superabsorbent hydrogels. Carbohydr Res. https://doi.org/10.1016/j.carres.2019.107883

    Article  PubMed  Google Scholar 

  85. Marcus Y (1988) Ionic radii in aqueous solutions. Chem Rev. https://doi.org/10.1021/cr00090a003

    Article  Google Scholar 

  86. Cao Y, Li S, Fang Y, Nishinari K, Phillips G, Lerbret A, Assifaoui A (2018) Specific binding of trivalent metal ions to λ-carrageenan. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2017.12.095

    Article  PubMed  Google Scholar 

  87. López-Avila A, Rodríguez-Manzo G, Coffeen U, del Angel R, Pellicer F (2004) Self-injury behaviour induced by intraplantar carrageenan infiltration: a model of tonic nociception. Brain Res Brain Res Protoc. https://doi.org/10.1016/j.brainresprot.2004.01.001

    Article  PubMed  Google Scholar 

  88. Mancinelli R, Botti A, Bruni F, Ricci M, Soper A (2007) Perturbation of water structure due to monovalent ions in solution. Phys Chem Chem Phys. https://doi.org/10.1039/B701855J

    Article  PubMed  Google Scholar 

  89. Mancinelli R, Botti A, Bruni F, Ricci M (2007) Hydration of sodium, potassium, and chloride ions in solution and the concept of structure maker/breaker. J Phys Chem B. https://doi.org/10.1021/jp075913v

    Article  PubMed  Google Scholar 

  90. Marcus Y (2009) Effect of ions on the structure of water: structure making and breaking. Chem Rev. https://doi.org/10.1021/cr8003828

    Article  PubMed  Google Scholar 

  91. Lin C, Metters A (2006) Hydrogels in controlled release formulations: network design and mathematical modelling. Adv Drug Deliv Rev. https://doi.org/10.1016/j.addr.2006.09.004

    Article  PubMed  Google Scholar 

Download references

Funding

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación (ANPCyT), Universidad Nacional del Litoral (UNL) and Agencia Santafesina de Ciencia, Tecnología e Innovación (ASaCTeI).

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed the manuscript. All authors will participate in the writing of the manuscript. All authors participated in the development of the experimental part

Corresponding author

Correspondence to Verónica D. G. Gonzalez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, V.S., Gugliotta, L.M., Gutierrez, C.G. et al. κ-Carrageenan Hydrogels as a Sustainable Alternative for Controlled Release of New Biodegradable Molecules with Antimicrobial Activities. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03189-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-024-03189-6

Keywords

Navigation