Skip to main content
Log in

Development and Characterization of Graphene Oxide-Locust Bean Gum-Zinc Oxide (GO-LBG-ZnO) Nanohybrid as an Efficient and Novel Antitumor Agent against Hepatocarcinoma Cells

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The main goal of this study was to introduce a nanohybrid based on graphene oxide and zinc oxide with strong antitumor activity for the treatment of hepatitis B virus-associated hepatocarcinoma. In this regard, the nanohybrid was fabricated through the first attachment of locust bean gum chains on the graphene oxide surface and subsequently zinc oxide nanoparticles decorated on the surface of graphene oxide-locust bean gum nanosheets. Then, the prepared ternary nanohybrid was assessed in terms of physicochemical and microstructural characteristics, cytotoxicity, and antitumor activity. Our primary results indicated the successful fabrication of nanohybrids. The results of toxicity assays showed that the prepared nanohybrid represented higher cytotoxicity on the cancer cell line compared to the normal cells. Antitumor activity results demonstrated that the synthesized nanohybrid can superiorly decline viral and cellular oncogenes and induce cell apoptosis in liver cancer cells. In conclusion, the fabricated nanohybrid demonstrated strong antitumor activity against hepatocarcinoma cells, which can be considered a promising candidate for the treatment of hepatocarcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Janevska D, Chaloska-Ivanova V, Janevski V (2015) Hepatocellular carcinoma: risk factors, diagnosis and treatment. Open Access Maced J Med Sci Scientific Foundation SPIROSKI 3:732

    Google Scholar 

  2. Tümen D, Heumann P, Gülow K, Demirci C-N, Cosma L-S, Müller M et al (2022) Pathogenesis and current treatment strategies of hepatocellular carcinoma. Biomedicines MDPI 10:3202

    Article  Google Scholar 

  3. Kim SK, Fujii T, Kim SR, Nakai A, Lim Y-S, Hagiwara S et al (2022) Hepatitis B virus treatment and Hepatocellular Carcinoma: controversies and approaches to Consensus. Liver Cancer 11:497–510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Heimbach JK, Kulik LM, Finn RS, Sirlin CB, Abecassis MM, Roberts LR et al (2018) AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatol Wiley Online Libr 67:358–380

    Google Scholar 

  5. Yoo J, Hann H-W, Coben R, Conn M, DiMarino AJ (2018) Update treatment for HBV infection and persistent risk for hepatocellular carcinoma: prospect for an HBV cure. Dis MDPI 6:27

    Google Scholar 

  6. Hui VW-K, Chan SL, Wong VW-S, Liang LY, Yip TC-F, Lai JC-T et al (2020) Increasing antiviral treatment uptake improves survival in patients with HBV-related HCC. JHEP Rep Elsevier 2:100152

    Article  Google Scholar 

  7. Pazgan-Simon M, Simon KA, Jarowicz E, Rotter K, Szymanek-Pasternak A, Zuwala-Jagiello J (2018) Hepatitis B virus treatment in hepatocellular carcinoma patients prolongs survival and reduces the risk of cancer recurrence. Clin Exp Hepatol Termedia 4:210–216

    Article  Google Scholar 

  8. Yin F, Xie Y, Fan H, Zhang J, Guo Z (2017) Mutations in hepatitis B virus polymerase are associated with the postoperative survival of hepatocellular carcinoma patients. PLoS ONE 12:e0189730 Public Library of Science San Francisco, CA USA

    Article  PubMed  PubMed Central  Google Scholar 

  9. Alhujaily M, Albukhaty S, Yusuf M, Mohammed MKA, Sulaiman GM, Al-Karagoly H et al (2022) Recent advances in plant-mediated zinc oxide nanoparticles with their significant biomedical properties. Bioeng MDPI 9:541

    CAS  Google Scholar 

  10. Anjum S, Hashim M, Malik SA, Khan M, Lorenzo JM, Abbasi BH et al (2021) Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment. Cancers (Basel) MDPI 13:4570

    Article  CAS  Google Scholar 

  11. Manohar A, Park J, Geleta DD, Krishnamoorthi C, Thangam R, Kang H et al (2021) Synthesis and characterization of ZnO nanoparticles for photocatalysis, antibacterial and cytotoxicity in kidney cancer (A498) cell lines. J Alloys Compd Elsevier 874:159868

    Article  CAS  Google Scholar 

  12. Prasad AS, Beck FWJ, Snell DC, Kucuk O (2009) Zinc in cancer prevention. Nutr Cancer Taylor & Francis 61:879–887

    Article  CAS  Google Scholar 

  13. Akhtar MJ, Ahamed M, Kumar S, Khan MAM, Ahmad J, Alrokayan SA (2012) Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int J Nanomedicine Taylor & Francis ; ;845–857

  14. Riduan SN, Zhang Y (2021) Recent advances of zinc-based Antimicrobial materials. Chem Asian J Wiley Online Library 16:2588–2595

    CAS  Google Scholar 

  15. Pandurangan M, Kim DH (2015) In vitro toxicity of zinc oxide nanoparticles: a review. J Nanoparticle Res Springer 17:1–8

    CAS  Google Scholar 

  16. Zabihi E, Babaei A, Shahrampour D, Arab-Bafrani Z, Mirshahidi KS, Majidi HJ (2019) Facile and rapid in-situ synthesis of chitosan-ZnO nano-hybrids applicable in medical purposes; a novel combination of biomineralization, ultrasound, and bio-safe morphology-conducting agent. Int J Biol Macromol [Internet]. ;131:107–16. Available from: http://www.sciencedirect.com/science/article/pii/S0141813018356460

  17. Idrees H, Zaidi SZJ, Sabir A, Khan RU, Zhang X, Hassan S (2020) A review of biodegradable natural polymer-based nanoparticles for drug delivery applications. Nanomaterials MDPI 10:1970

    Article  CAS  Google Scholar 

  18. Wang Z, Colombi Ciacchi L, Wei G (2017) Recent advances in the synthesis of graphene-based nanomaterials for controlled drug delivery. Appl Sci MDPI 7:1175

    Article  Google Scholar 

  19. Khashan KS, Abdulameer FA, Jabir MS, Hadi AA, Sulaiman GM (2020) Anticancer activity and toxicity of carbon nanoparticles produced by pulsed laser ablation of graphite in water. Adv Nat Sci Nanosci Nanotechnol IOP Publishing 11:35010

    Article  CAS  Google Scholar 

  20. Jihad MA, Noori FTM, Jabir MS, Albukhaty S, AlMalki FA, Alyamani AA (2021) Polyethylene glycol functionalized graphene oxide nanoparticles loaded with nigella sativa extract: a smart antibacterial therapeutic drug delivery system. Molecules MDPI 26:3067

    Article  CAS  Google Scholar 

  21. Campbell E (2018) Carbon nanomaterials as Imaging, sensing, and Delivery agents for Cancer therapeutics. Texas Christian University

  22. Li R, Wang Y, Du J, Wang X, Duan A, Gao R et al (2021) Graphene oxide loaded with tumor-targeted peptide and anti-cancer drugs for cancer target therapy. Sci Rep Nature Publishing Group UK London 11:1725

    CAS  Google Scholar 

  23. Zhang X, Guo L, Sun Z, Han D, Zhao L (2023) Research on the Targeted Treatment of Squamous Cell Carcinoma by Nanographene Drug Delivery System. Adv Mater Sci Eng. Hindawi; ;2023

  24. Linares J, Matesanz MC, Vila M, Feito MJ, Goncalves G, Vallet-Regi M et al (2014) Endocytic mechanisms of graphene oxide nanosheets in osteoblasts, hepatocytes and macrophages. ACS Appl Mater Interfaces ACS Publications 6:13697–13706

    Article  CAS  Google Scholar 

  25. Gonçalves G, Vila M, Portolés M, Vallet-Regi M, Gracio J, Marques PAAP (2013) Nano‐graphene oxide: a potential multifunctional platform for cancer therapy. Adv Healthc Mater Wiley Online Library 2:1072–1090

    Article  Google Scholar 

  26. Mu Q, Su G, Li L, Gilbertson BO, Yu LH, Zhang Q et al (2012) Size-dependent cell uptake of protein-coated Graphene Oxide nanosheets. ACS Appl Mater Interfaces 4:2259–2266

    Article  PubMed  CAS  Google Scholar 

  27. Zhang B, Wei P, Zhou Z, Wei T (2016) Interactions of graphene with mammalian cells: molecular mechanisms and biomedical insights. Adv Drug Deliv Rev 105:145–162

    Article  PubMed  CAS  Google Scholar 

  28. Fiorillo M, Verre AF, Iliut M, Peiris-Pagés M, Ozsvari B, Gandara R et al (2015) Graphene oxide selectively targets cancer stem cells, across multiple tumor types: implications for non-toxic cancer treatment, via differentiation-based nano-therapy. Oncotarget 6:3553–3562

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hong BJ, Compton OC, An Z, Eryazici I, Nguyen ST (2012) Successful stabilization of graphene oxide in electrolyte solutions: enhancement of biofunctionalization and cellular uptake. ACS Nano ACS Publications 6:63–73

    Article  CAS  Google Scholar 

  30. Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc ACS Publications 130:10876–10877

    Article  CAS  Google Scholar 

  31. McCallion C, Burthem J, Rees-Unwin K, Golovanov A, Pluen A (2016) Graphene in therapeutics delivery: problems, solutions and future opportunities. Eur J Pharm Biopharm Elsevier 104:235–250

    Article  CAS  Google Scholar 

  32. Hussien NA, Işıklan N, Türk M (2018) Pectin-conjugated magnetic graphene oxide nanohybrid as a novel drug carrier for paclitaxel delivery. Artif cells, nanomedicine, Biotechnol, vol 46. Taylor & Francis, pp 264–273

  33. Deb A, Andrews NG, Raghavan V (2018) Natural polymer functionalized graphene oxide for co-delivery of anticancer drugs: In-vitro and in-vivo. Int J Biol Macromol Elsevier 113:515–525

    Article  CAS  Google Scholar 

  34. Albukhaty S, Al-Karagoly H, Allafchian AR, Jalali SAH, Al-Kelabi T, Muhannad M (2021) Production and characterization of biocompatible nanofibrous scaffolds made of β-sitosterol loaded polyvinyl alcohol/tragacanth gum composites. Nanatechnol IOP Publishing 33:85102

    Google Scholar 

  35. Li K, Lei Y, Liao J, Zhang Y (2021) A facile synthesis of graphene oxide/locust bean gum hybrid aerogel for water purification. Carbohydr Polym Elsevier 254:117318

    Article  CAS  Google Scholar 

  36. Petitjean M, Isasi JR (2022) Locust Bean Gum, a Vegetable Hydrocolloid with Industrial and Biopharmaceutical Applications. Molecules MDPI 27:8265

    Article  CAS  Google Scholar 

  37. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A et al (2010) Improved synthesis of graphene oxide. ACS Nano ACS Publications 4:4806–4814

    Article  CAS  Google Scholar 

  38. Jabir MS, Nayef UM, Abdulkadhim WK, Taqi ZJ, Sulaiman GM, Sahib UI et al (2021) Fe 3 O 4 nanoparticles capped with PEG induce apoptosis in breast cancer AMJ13 cells via mitochondrial damage and reduction of NF-κB translocation. J Inorg Organomet Polym Mater Springer 31:1241–1259

    Article  CAS  Google Scholar 

  39. Bahjat HH, Ismail RA, Sulaiman GM, Jabir MS (2021) Magnetic field-assisted laser ablation of titanium dioxide nanoparticles in water for anti-bacterial applications. J Inorg Organomet Polym Mater Springer 31:3649–3656

    Article  CAS  Google Scholar 

  40. Rashid TM, Nayef UM, Jabir MS, Mutlak FA-H (2021) Synthesis and characterization of au: ZnO (core: shell) nanoparticles via laser ablation. Optik (Stuttg) Elsevier 244:167569

    Article  CAS  Google Scholar 

  41. Jabir MS, Nayef UM, Jawad KH, Taqi ZJ, Ahmed NR (2018) Porous silicon nanoparticles prepared via an improved method: a developing strategy for a successful antimicrobial agent against Escherichia coli and Staphylococcus aureus. IOP Conf Ser Mater Sci Eng. IOP Publishing; p. 12077

  42. Jabir MS, Nayef UM, Abdul KWK (2019) Polyethylene glycol-functionalized magnetic (fe 3 O 4) nanoparticles: a novel DNA-mediated antibacterial agent. Nano Biomed Eng 上海交通大学 11:18–27

    CAS  Google Scholar 

  43. Dastjerdi MN, Kavoosi F, Valiani A, Esfandiari E, Sanaei M, Sobhanian S et al (2015) Inhibitory effect of genistein on PLC/PRF5 hepatocellular carcinoma cell line. Int J Prev Med. Wolters Kluwer–Medknow Publications; ;6

  44. Ibrahim AA, Kareem MM, Al-Noor TH, Al-Muhimeed T, AlObaid AA, Albukhaty S et al (2021) Pt (II)-thiocarbohydrazone complex as cytotoxic agent and apoptosis inducer in Caov-3 and HT-29 cells through the P53 and caspase-8 pathways. Pharmaceuticals MDPI 14:509

    Article  CAS  Google Scholar 

  45. Al-Ziaydi AG, Al-Shammari AM, Hamzah MI, Jabir MS (2020) Hexokinase inhibition using D-Mannoheptulose enhances oncolytic newcastle disease virus-mediated killing of breast cancer cells. Cancer Cell Int BioMed Central 20:1–10

    Google Scholar 

  46. Mousavi E, Makvandi M, Teimoori A, Ataei A, Ghafari S, Samarbaf-Zadeh A (2018) Antiviral effects of Lactobacillus crispatus against HSV-2 in mammalian cell lines. J Chinese Med Assoc [Internet]. Elsevier Ltd; ;81:262–7. https://doi.org/10.1016/j.jcma.2017.07.010

  47. Lakshmanan I, Batra SK (2013) Protocol for apoptosis assay by flow cytometry using annexin V staining method. Bio-protocol 3:e374–e374

    Article  PubMed  Google Scholar 

  48. Pahlevan Kakhki M (2014) TRIzol-based RNA extraction: a reliable method for gene expression studies. J Sci Islam Repub Iran University of Tehran 25:13–17

    Google Scholar 

  49. Hosseini-Baraftabi N, Zia-Jahromi N, Talebi A (2019) Comparison of interleukin 18 gene expression and its serum level between Iranian colorectal cancer (CRC) patients and healthy people. Biol (Bratisl) Springer 74:103–109

    Article  CAS  Google Scholar 

  50. Larsson SB, Eilard A, Malmström S, Hannoun C, Dhillon AP, Norkrans G et al (2014) HBsAg quantification for identification of liver disease in chronic hepatitis B virus carriers. Liver Int Wiley Online Library 34:e238–e245

    CAS  Google Scholar 

  51. Jabir MS, Sulaiman GM, Taqi ZJ, Li D (2018) Iraqi propolis increases degradation of IL-1β and NLRC4 by autophagy following Pseudomonas aeruginosa infection. Microbes Infect Elsevier 20:89–100

    Article  CAS  Google Scholar 

  52. Ali IH, Jabir MS, Al-Shmgani HSA, Sulaiman GM, Sadoon AH (2018) Pathological and immunological study on infection with Escherichia coli in ale balb/c mice. J Phys Conf Ser. IOP Publishing; p. 12009

  53. Majidi HJ, Mirzaee A, Jafari SM, Amiri M, Shahrousvand M, Babaei A (2020) Fabrication and characterization of graphene oxide-chitosan-zinc oxide ternary nano-hybrids for the corrosion inhibition of mild steel. Int J Biol Macromol Elsevier 148:1190–1200

    Article  Google Scholar 

  54. Joz Majidi H, Babaei A, Kazemi-Pasarvi S, Arab‐Bafrani Z, Amiri M (2021) Tuning polylactic acid scaffolds for tissue engineering purposes by incorporating graphene oxide‐chitosan nano‐hybrids. Polym Adv Technol Wiley Online Library 32:1654–1666

    CAS  Google Scholar 

  55. Aeindartehran L, Ashraf Talesh SS (2021) Enhanced photocatalytic degradation of Acid Blue 1 using Ni-Decorated ZnO NPs synthesized by sol-gel method: RSM optimization approach. Ceram Int 47:27294–27304

    Article  CAS  Google Scholar 

  56. Ismail AM, Menazea AA, Kabary HA, El-Sherbiny AE, Samy A (2019) The influence of calcination temperature on structural and antimicrobial characteristics of zinc oxide nanoparticles synthesized by Sol–Gel method. J Mol Struct 1196:332–337

    Article  CAS  Google Scholar 

  57. Liu F, Chang W, Chen M, Xu F, Ma J, Zhong F (2020) Film-forming properties of guar gum, tara gum and Locust bean gum. Food Hydrocoll Elsevier 98:105007

    Article  CAS  Google Scholar 

  58. Joz Majidi H, Babaei A, Arab Bafrani Z, Shahrampour D, Zabihi E, Jafari SM et al (2019) Investigating the best strategy to diminish the toxicity and enhance the antibacterial activity of graphene oxide by chitosan addition. Carbohydr Polym [Internet]. Elsevier; ;225:115220. Available from: http://www.sciencedirect.com/science/article/pii/S0144861719308872

  59. Goudarzi A, Zabihi E, Shahrampour D, Heydari Sorshejani M (2022) Eco-friendly synthesis of large band gap ZnO nanoparticles by trisodium citrate: investigation of annealing effect on structural and optical properties. J Mater Sci Mater Electron Springer 33:22798–22809

    Article  CAS  Google Scholar 

  60. Rashid TM, Nayef UM, Jabir MS, Mutlak FAH (2021) Study of optical and morphological properties for Au-ZnO nanocomposite prepared by Laser ablation in liquid. J Phys Conf Ser. IOP Publishing; p. 12041

  61. Kaijanen L, Paakkunainen M, Pietarinen S, Jernström E, Reinikainen S-P (2015) Ultraviolet detection of monosaccharides: multiple wavelength strategy to evaluate results after capillary zone electrophoretic separation. Int J Electrochem Sci 10:2950–2961

    Article  CAS  Google Scholar 

  62. Samrot AV, Bisyarah U, Kudaiyappan T, Etel F, Abubakar A (2021) Ficus iyrata plant gum derived polysaccharide based nanoparticles and its application. Biocatal Agric Biotechnol Elsevier 31:101871

    Article  CAS  Google Scholar 

  63. Krasteva N, Staneva D, Vasileva B, Miloshev G, Georgieva M (2021) Bioactivity of PEGylated graphene oxide nanoparticles combined with near-infrared laser irradiation studied in colorectal carcinoma cells. Nanomaterials MDPI 11:3061

    Article  CAS  Google Scholar 

  64. Teimouri M, Nia AH, Abnous K, Eshghi H, Ramezani M (2016) Graphene oxide–cationic polymer conjugates: synthesis and application as gene delivery vectors. Plasmid Elsevier 84:51–60

    Article  Google Scholar 

  65. Esmaeili Y, Bidram E, Zarrabi A, Amini A, Cheng C (2020) Graphene oxide and its derivatives as promising In-vitro bio-imaging platforms. Sci Rep Nature Publishing Group UK London 10:18052

    CAS  Google Scholar 

  66. Jaberi I, Khosravi A, Rasouli S (2020) Graphene oxide-PEG: an effective anti-wax precipitation nano-agent in crude oil transportation. Upstream Oil Gas Technol Elsevier 5:100017

    Article  Google Scholar 

  67. Khashan KS, Jabir MS, Abdulameer FA (2018) Preparation and characterization of copper oxide nanoparticles decorated carbon nanoparticles using laser ablation in liquid. J Phys Conf Ser. IOP Publishing; p. 12100

  68. Mohammed MKA, Mohammad MR, Jabir MS, Ahmed DS (2020) Functionalization, characterization, and antibacterial activity of single wall and multi wall carbon nanotubes. IOP Conf Ser Mater Sci Eng. IOP Publishing; p. 12028

  69. Rasmussen JW, Martinez E, Louka P, Wingett DG (2010) Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv Taylor & Francis 7:1063–1077

    Article  CAS  Google Scholar 

  70. Yu K-N, Yoon T-J, Minai-Tehrani A, Kim J-E, Park SJ, Jeong MS et al (2013) Zinc oxide nanoparticle induced autophagic cell death and mitochondrial damage via reactive oxygen species generation. Toxicol Vitr Elsevier 27:1187–1195

    Article  CAS  Google Scholar 

  71. Sharma V, Anderson D, Dhawan A (2012) Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis, vol 17. Springer, pp 852–870

  72. Singh S (2019) Zinc oxide nanoparticles impacts: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Toxicol Mech Methods Taylor & Francis 29:300–311

    Article  CAS  Google Scholar 

  73. Ali A, Ahmed S (2018) A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol Elsevier 109:273–286

    Article  CAS  Google Scholar 

  74. Karki N, Tiwari H, Tewari C, Rana A, Pandey N, Basak S et al (2020) Functionalized graphene oxide as a vehicle for targeted drug delivery and bioimaging applications. J Mater Chem B Royal Society of Chemistry 8:8116–8148

    Article  CAS  Google Scholar 

  75. Fisher C, Rider AE, Han ZJ, Kumar S, Levchenko I, Ostrikov KK (2012) Applications and nanotoxicity of carbon nanotubes and graphene in biomedicine. J Nanomater 2012:3

    Article  Google Scholar 

  76. Tonelli FMP, Goulart VAM, Gomes KN, Ladeira MS, Santos AK, Lorençon E et al (2015) Graphene-based nanomaterials: biological and medical applications and toxicity. Nanomed Future Med 10:2423–2450

    CAS  Google Scholar 

  77. Caswell P, Norman J (2008) Endocytic transport of integrins during cell migration and invasion. Trends Cell Biol Elsevier 18:257–263

    Article  CAS  Google Scholar 

  78. Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem Annual Reviews 78:857–902

    Article  CAS  Google Scholar 

  79. Gordien E, Rosmorduc O, Peltekian C, Garreau F, Bréchot C, Kremsdorf D (2001) Inhibition of hepatitis B virus replication by the interferon-inducible MxA protein. J Virol Am Soc Microbiol 75:2684–2691

    CAS  Google Scholar 

  80. Tarocchi M, Polvani S, Marroncini G, Galli A (2014) Molecular mechanism of hepatitis B virus-induced hepatocarcinogenesis. World J Gastroenterol WJG Baishideng Publishing Group Inc 20:11630

    Article  CAS  Google Scholar 

  81. Shirolkar GD, Pasic S, Gogoi-Tiwari J, Bhat MK, Olynyk JK, Dharmarajan D et al (2018) Wnt/B-Catenin signalling during liver metabolism, chronic liver disease and hepatocarcinogenesis. Codon Publications

  82. Ng DTC (2013) Induction of Pluripotent Stem Cells Via Wnt Signaling Pathway.

  83. Ninsontia C, Phiboonchaiyanan PP, Kiratipaiboon C, Chanvorachote P (2017) Zinc suppresses stem cell properties of lung cancer cells through protein kinase C-mediated β-catenin degradation. Am J Physiol Physiol. American Physiological Society Bethesda, MD; ;312:C487–99

  84. Trejo-Solis C, Escamilla-Ramirez A, Jimenez-Farfan D, Castillo-Rodriguez RA, Flores-Najera A, Cruz-Salgado A (2021) Crosstalk of the Wnt/β-Catenin signaling pathway in the induction of apoptosis on Cancer cells. Pharmaceuticals 14:871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The Ethical Committee of Kerman University of Medical Sciences (IR.KMU.AH.REC.1400.223 with grant number 400000202) approved the study.

Author information

Authors and Affiliations

Authors

Contributions

M.E and A-B.Z designed the research. Sh.S, J-M.H, Z.E, R.M and M.E performed the experiments. A-B.Z, M.E and E.S contributed to analysis and interpretation of data. J-M.H, A-B.Z and M.E wrote the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Zahra Arab-Bafrani or Elham Mousavi.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakibaie, S., Joze-Majidi, H., Zabihi, E. et al. Development and Characterization of Graphene Oxide-Locust Bean Gum-Zinc Oxide (GO-LBG-ZnO) Nanohybrid as an Efficient and Novel Antitumor Agent against Hepatocarcinoma Cells. J Polym Environ (2024). https://doi.org/10.1007/s10924-023-03184-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-023-03184-3

Keywords

Navigation