Skip to main content
Log in

Strategy for the Preparation of PBAT/Starch Blended Foam with High Resilience and Shrinkage Resistance

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Poly (butylene adipate-co-terephthalate) (PBAT), a biodegradable polyester, has gained increasing research interest. Foam polymers based on PBAT have demonstrated high potential for various applications. Here, we propose a novel method for blending foam made of starch and PBAT. Melt blending was used to create PBAT/starch blends, and batch supercritical CO2 autoclave foaming was used to create polymer foams. We looked into the mechanical characteristics, crystallization, and dispersion morphology of PBAT/starch mixes. The structure, together with the anti-shrinkage and compressive strengths of PBAT/starch foams were investigated. The findings demonstrate that starch can be more effectively incorporated into the PBAT matrix with the aid of polyol (glycerol) and that the addition of starch with specific quantities can create a clear bimodal-like cell structure, thus increasing the matrix's rigidity and lessen the shrinkage issue with PBAT foam, resulting in foam with good compression resilience. The largest expansion ratio, 19, the least shrinking, and outstanding compression resilience were found in the 70/30 mixture of PBAT and starch. It provides a broadly applicable method for possible large-scale manufacture of biodegradable polyester foams with anti-shrinkage and high compression resilience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297:803–807. https://doi.org/10.1126/science.297.5582.803

    Article  CAS  PubMed  Google Scholar 

  2. Jiao J, Zeng X, Huang X (2020) An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)–PBAT. Adv Ind Eng Polym Res 3:19–26. https://doi.org/10.1016/j.aiepr.2020.01.001

    Article  Google Scholar 

  3. Yu P, Mi HY, Huang A, Geng LH, Chen BY, Kuang TR, Mou WJ, Peng XF (2015) Effect of poly(butylenes succinate) on poly(lactic acid) foaming behavior: formation of open cell structure. Ind Eng Chem Res 54:6199–6207. https://doi.org/10.1021/acs.iecr.5b00477

    Article  CAS  Google Scholar 

  4. Yin DX, Mi JG, Zhou HF, Wang XD, Tian HF (2020) Fabrication of branching poly (butylene succinate)/cellulose nanocrystal foams with exceptional thermal insulation. Carbohydr Polym 247:116708. https://doi.org/10.1016/j.carbpol.2020.116708

    Article  CAS  PubMed  Google Scholar 

  5. Hu DD, Xue K, Liu Z, Xu ZM, Zhao L (2022) The essential role of PBS on PBAT foaming under supercritical CO2 toward green engineering. J CO2 Util 60:101965. https://doi.org/10.1016/j.jcou.2022.101965

    Article  CAS  Google Scholar 

  6. Wei DF, Wang H, Xiao H, Zheng AN, Yang Y (2015) Morphology and mechanical properties of poly (butylene adipate-co-terephthalate)/potato starch blends in the presence of synthesized reactive compatibilizer or modified poly (butylene adipate-co-terephthalate). Carbohydr Polym 123:275–282. https://doi.org/10.1016/j.carbpol.2015.01.058

    Article  CAS  PubMed  Google Scholar 

  7. Dammak M, Fourati Y, Tarrés Q, Delgado-Aguilar M, Mutjé P, Boufi S (2020) Blends of PBAT with plasticized starch for packaging applications: mechanical properties, rheological behaviour and biodegradability. Ind Eng Chem Res 144:112061. https://doi.org/10.1016/j.indcrop.2019.112061

    Article  CAS  Google Scholar 

  8. Pang Y, Cao Y, Zheng WG, Park CB (2022) A comprehensive review of cell structure variation and general rules for polymer microcellular foams. Chem Eng J 430:132662. https://doi.org/10.1016/j.cej.2021.132662

    Article  CAS  Google Scholar 

  9. Hong SH, Hwang SH (2022) Construction, physical properties and foaming behavior of high-content lignin reinforced low-density polyethylene biocomposites. Polymers 14:2688. https://doi.org/10.3390/polym14132688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li CT, Cui Q, Li Y, Zhang K, Lu X, Zhang Y (2022) Effect of LDPE and biodegradable PBAT primary microplastics on bacterial community after four months of soil incubation. J Hazard Mater 429:128353. https://doi.org/10.1016/j.jhazmat.2022.128353

    Article  CAS  PubMed  Google Scholar 

  11. Astner AF, Hayes DG, O’Neill H, Evans BR, Pingali SV, Urban VS, Young TM (2019) Mechanical formation of micro-and nano-plastic materials for environmental studies in agricultural ecosystems. Sci Total Environ 685:1097–1106. https://doi.org/10.1016/j.scitotenv.2019.06.241

    Article  CAS  PubMed  Google Scholar 

  12. Fukasawa Y, Okuda T, Shimada T, Hattori M, Saito H (2008) Mechanism of permeability modification in polyethylene foams. J Cell Plast 44:107–123. https://doi.org/10.1177/0021955X07081649

    Article  CAS  Google Scholar 

  13. Shi XT, Qin JB, Wang L, Ren LC, Rong F, Li DH, Wang R, Zhang GC (2018) Introduction of stereocomplex crystallites of PLA for the solid and microcellular poly(lactide)/poly(butylene adipate-co-terephthalate) blends. Rsc Adv 8:11850–11861. https://doi.org/10.1039/C8RA01570H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zehetmeyer G, Meira SMM, Scheibel JM, Silva CB, Rodembusch FS, Brandelli A, Soares RMD (2017) Biodegradable and antimicrobial films based on poly (butylene adipate-co-terephthalate) electrospun fibers. Polym Bull 74:3243–3268. https://doi.org/10.1007/s00289-016-1896-8

    Article  CAS  Google Scholar 

  15. Malinowski R, Stepczyńska M, Raszkowska-Kaczor A, Żuk T (2017) Some effects of foaming of the poly (butylene adipate-co-terephthalate) modified by electron radiation. Polym Adv Technol 29:1117–1122. https://doi.org/10.1002/pat.4223

    Article  CAS  Google Scholar 

  16. Cui YL, Zhou HY, Yin DX, Zhou HF, Wang XD (2021) An innovative strategy to regulate bimodal cellular structure in chain extended poly (butylene adipate-co-terephthalate) foams. J Vinyl Addit Techn 27:319–331. https://doi.org/10.1002/vnl.21805

    Article  CAS  Google Scholar 

  17. Long H, Xu HS, Shaoyu JW, Jiang TC, Zhuang W, Li M, Jin J, Ji L, Ying H, Zhu C (2023) High-strength bio-degradable polymer foams with stable high volume-expansion ratio using chain extension and green supercritical mixed-gas foaming. Polymers 15:895. https://doi.org/10.3390/polym1504089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sheng HN, Zhou ZJ, Yan HK, Yao YY, Zhang L (2023) Shrink-Resistant poly (butyleneadipate-co-terephthalate) foam reinforced with crystalline poly(3-hydroxybutyrate-co-3-hydroxyvalerate) particles. ACS Appl Polym Mater 5:7519–7527. https://doi.org/10.1021/acsapm.3c01348

    Article  CAS  Google Scholar 

  19. Peng J, Zhang C, Mi H, Peng XF, Turng LS (2014) Study of solid and microcellular injection-molded poly (butylenes adipate-co-terephthalate)/poly (vinyl alcohol) biodegradable parts. Ind Eng Chem Res 53:8493–8500. https://doi.org/10.1021/ie500451s

    Article  CAS  Google Scholar 

  20. Lan B, Li PZ, Yang Q, Gong PJ (2020) Dynamic self generation of hydrogen bonding and relaxation of polymer chain segment in stabilizing thermoplastic polyurethane microcellular foams. Mater Today 24:101056. https://doi.org/10.1016/j.mtcomm.2020.101056

    Article  CAS  Google Scholar 

  21. Wang ZZ, Zhao JC, Wang GL, Xu ZR, Zhang AM, Dong GW, Zhao GQ (2022) Lightweight, low-shrinkage and high elastic poly (butylene adipate-co-terephthalate) foams achieved by microcellular foaming using N2 & CO2 as co-blowing agents. J CO2 Util 64:102149. https://doi.org/10.1016/j.jcou.2022.102149

    Article  CAS  Google Scholar 

  22. Davydov EY, Gaponova IS, Pokholok TV, Pariiskii GB (2011) Ion-radical conversions in main or side chains of nitrogen-containing polymers in nitrogen dioxide atmosphere. J Polym Environ 19:312–327. https://doi.org/10.1016/j.jcou.2022.102149

    Article  CAS  Google Scholar 

  23. T. Britannica (eds) (2023) Hooke’s law. Encyclopedia Britannica. https://www.britannica.com/science/Hookes-law

  24. Moustafa H, Guizani C, Dupont C, Martin V, Jeguirim M, Dufresn A (2017) Utilization of torrefied coffee grounds as reinforcing agent to produce high-quality biodegradable PBAT composites for food packaging applications. ACS Sustain Chem Eng 5:1906–1916. https://doi.org/10.1021/acssuschemeng.6b02633

    Article  CAS  Google Scholar 

  25. Perumal N, Sreekantan S, Hamid ZAA, Rusli A, Bhubalan K, Appaturi JN (2023) Effect of plasticizer and compatibilizer on properties of polybutylene adipate-co-terephthalate (PBAT) with acetylated starch. J Polym Environ. https://doi.org/10.1007/s10924-023-02964-1

    Article  Google Scholar 

  26. Yang F, Qiu ZB (2011) Preparation, crystallization, and properties of biodegradable poly (butylene adipate-co-terephthalate)/organomodified montmorillonite nanocomposites. J Appl Polym Sci 119:1426–1434. https://doi.org/10.1002/app.32619

    Article  CAS  Google Scholar 

  27. Kuwabara K, Gan Z, Nakamura T, Abe H, Doi Y (2002) Crystalline/amorphous phase structure and molecular mobility of biodegradable poly (butylene adipate-c o-butylene terephthalate) and related polyesters. Biomacromol 3:390–396. https://doi.org/10.1021/bm0156476

    Article  CAS  Google Scholar 

  28. Wei XY, Ren L, Sun YN, Zhang XY, Guan XF, Zhang MY, Zhang HX (2021) Sustainable composites from biodegradable poly (butylene succinate) modified with thermoplastic starch and poly (butylene adipate-co-terephthalate): preparation and performance. New J Chem 45:17384–17397. https://doi.org/10.1039/D1NJ03208A

    Article  CAS  Google Scholar 

  29. Yesmine F, Quim T, Peré M, Sami B (2018) PBAT/thermoplastic starch blends: effect of compatibilizers on the rheological, mechanical and morphological properties. Carbohydr Polym 199:51–57. https://doi.org/10.1016/j.carbpol.2018.07.008

    Article  CAS  Google Scholar 

  30. Zhang SD, He Y, Jiang G (2019) Fabrication of innovative thermoplastic starch bio-elastomer to achieve high toughness poly(butylene succinate) composites. Carbohydr Polym 206:827–836. https://doi.org/10.1016/j.carbpol.2018.11.036

    Article  CAS  PubMed  Google Scholar 

  31. Song JS, Zhou HF, Wang XD, Zhang YX, Mi JG (2019) Role of chain extension in the rheological properties, crystallization behaviors, and microcellular foaming performances of poly (butylene adipate-co-terephthalate). J Appl Polym Sci 136:47322. https://doi.org/10.1002/app.47322

    Article  CAS  Google Scholar 

  32. Lee KM, Lee EK, Kim SG, Park CB, Naguib HE (2009) Bi-cellular foam structure of polystyrene from extrusion foaming process. J Cell Plast 45:539–553. https://doi.org/10.1177/0021955X09343632

    Article  CAS  Google Scholar 

  33. Tabatabaei A, Barzegari MR, Mark LH, Park CB (2017) Visualization of polypropylene’s strain-induced crystallization under the influence of supercritical CO2 in extrusion. Polymer 122:312–322. https://doi.org/10.1016/j.polymer.2017.06.052

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to EditSprings (https://www.editsprings.cn ) for the expert linguistic services provided.

Funding

There is no funding declaration for this work.

Author information

Authors and Affiliations

Authors

Contributions

QY is responsible for the operation of experiment, experimental data processing and the writing of the article. XW directed the whole experiment. SL revised the manuscript.

Corresponding authors

Correspondence to Shuhong Li or Xiangdong Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4174 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Li, S. & Wang, X. Strategy for the Preparation of PBAT/Starch Blended Foam with High Resilience and Shrinkage Resistance. J Polym Environ (2024). https://doi.org/10.1007/s10924-023-03182-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-023-03182-5

Keywords

Navigation