Skip to main content
Log in

Rare Earth Metal Ions Adsorption Using 2-[2-Oxo-2-(1-pyrrolidinyl)ethoxy]acetic acid/Sodium Alginate Gel

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this research, adsorbents synthesized from natural sodium alginate polymers incorporated with varying concentrations of 2-[2-oxo-2-(1-pyrrolidinyl)ethoxy]acetic acid (PYRDGA) were investigated. Analyses of adsorption properties indicated that the pristine sodium alginate gel (SAG) demonstrated adsorption capacities of 222.4, 202.6, 199.1 and 398.0 mg g−1 for La, Gd, Y, and Sc, respectively. The composite gel infused with PYRDGA at a 1:1 ratio exhibited adsorption values of 278.2, 270.6, 283.2 and 374.9 mg g−1 for the same elements. Across all synthesized gels, an optimal pH of 5 was identified for the adsorption of rare earth element (REE)3+ ions. The introduction of the extractant PYRDGA notably reduced the gel's selectivity towards Cu, Pb, Cd, and Cr. Spectroscopic analyses highlighted the critical involvement of C=O and C–O functional groups in the adsorption mechanisms. Kinetic assessments suggested the applicability of R–P model, inferring that the rare earth ions' adsorption onto the gels could be characterized by uniform or non-uniform monolayer surface adsorption. Furthermore, thermodynamic evaluations were conducted for various gels against REE3+ ions at 298.15 K. Among the eluents analyzed, the most efficient recovery of REE3+ was observed with 0.1 M HCl/CaCl2。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mancheri NA, Sprecher B, Bailey G, Ge J, Tukker A (2019) Effect of Chinese policies on rare earth supply chain resilience. Resour Conserv Recycl 142:101–112. https://doi.org/10.1016/j.resconrec.2018.11.017

    Article  Google Scholar 

  2. Jowitt SM, Werner TT, Weng Z, Mudd GM (2018) Recycling of the rare earth elements. Curr Opin Green Sustain Chem 13:1–7. https://doi.org/10.1016/j.cogsc.2018.02.008

    Article  Google Scholar 

  3. Rezai B, Allahkarami E (2021) Chapter 2—Wastewater treatment processes—techniques, technologies, challenges faced, and Alternative Solutions. In: Karri RR, Ravindran G, Dehghani MH (eds) Soft computing techniques in solid waste and wastewater management. Elsevier, Amsterdam, pp 35–53

    Chapter  Google Scholar 

  4. Allahkarami E, Rezai B (2019) Removal of cerium from different aqueous solutions using different adsorbents: a review. Process Saf Environ Prot 124:345–362. https://doi.org/10.1016/j.psep.2019.03.002

    Article  CAS  Google Scholar 

  5. Allahkarami E, Rezai B (2021) A literature review of cerium recovery from different aqueous solutions. J Environ Chem Eng 9(1):104956. https://doi.org/10.1016/j.jece.2020.104956

    Article  CAS  Google Scholar 

  6. Qasem NAA, Mohammed RH, Lawal DU (2021) Removal of heavy metal ions from wastewater: a comprehensive and critical review. NPJ Clean Water 4(1):36. https://doi.org/10.1038/s41545-021-00127-0

    Article  CAS  Google Scholar 

  7. Xiao G, Su H, Tan T (2015) Synthesis of core–shell bioaffinity chitosan–TiO2 composite and its environmental applications. J Hazard Mater 283:888–896. https://doi.org/10.1016/j.jhazmat.2014.10.047

    Article  CAS  PubMed  Google Scholar 

  8. Salzano de Luna M, Castaldo R, Altobelli R et al (2017) Chitosan hydrogels embedding hyper-crosslinked polymer particles as reusable broad-spectrum adsorbents for dye removal. Carbohyd Polym 177:347–354. https://doi.org/10.1016/j.carbpol.2017.09.006

    Article  CAS  Google Scholar 

  9. Lin S, Huang R, Cheng Y, Liu J, Lau BLT, Wiesner MR (2013) Silver nanoparticle-alginate composite beads for point-of-use drinking water disinfection. Water Res 47(12):3959–3965. https://doi.org/10.1016/j.watres.2012.09.005

    Article  CAS  PubMed  Google Scholar 

  10. Gadd GM (2009) Biosorption critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84(1):13–28. https://doi.org/10.1002/jctb.1999

    Article  CAS  Google Scholar 

  11. Ahmad A, Bhat AH, Buang A (2019) Enhanced biosorption of transition metals by living Chlorella vulgaris immobilized in Ca-alginate beads. Environ Technol 40(14):1793–1809. https://doi.org/10.1080/09593330.2018.1430171

    Article  CAS  PubMed  Google Scholar 

  12. Vijayaraghavan K, Sathishkumar M, Balasubramanian R (2010) Biosorption of lanthanum, cerium, europium, and ytterbium by a brown marine alga, turbinaria conoides. Ind Eng Chem Res 49:4405–4411

    Article  CAS  Google Scholar 

  13. Xu S, Wang Z, Gao Y, Zhang S, Wu K (2015) Adsorption of rare earths (III) using an efficient sodium alginate hydrogel cross-linked with poly-γ-glutamate. PLoS ONE 10(5):e0124826. https://doi.org/10.1371/journal.pone.0124826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Costa TBd, Silva MGCd, Vieira MGA (2021) Lanthanum biosorption using sericin/alginate particles crosslinked by poly(vinyl alcohol): Kinetic, cation exchange, and desorption studies. J Environ Chem Eng 9:105551

    Article  Google Scholar 

  15. da Costa TB, da Silva MGC, Vieira MGA (2021) Recovery of dysprosium by biosorption onto a biocomposite from sericin and alginate. J Water Process Eng 44:102388. https://doi.org/10.1016/j.jwpe.2021.102388

    Article  Google Scholar 

  16. Mohammedi H, Miloudi H, Boos A, Bertagnolli C (2020) Lanthanide recovery by silica-Cyanex 272 material immobilized in alginate matrix. Environ Sci Pollut Res Int 27(21):26943–26953. https://doi.org/10.1007/s11356-020-08484-y

    Article  CAS  PubMed  Google Scholar 

  17. Bai R, Yang F, Zhang Y et al (2018) Preparation of elastic diglycolamic-acid modified chitosan sponges and their application to recycling of rare-earth from waste phosphor powder. Carbohyd Polym 190:255–261. https://doi.org/10.1016/j.carbpol.2018.02.059

    Article  CAS  Google Scholar 

  18. Horne GP, Celis-Barros C, Conrad JK et al (2023) Impact of lanthanide ion complexation and temperature on the chemical reactivity of N, N, N′, N′-tetraoctyl diglycolamide (TODGA) with the dodecane radical cation. Phys Chem Chem Phys 25(24):16404–16413. https://doi.org/10.1039/D3CP01119D

    Article  CAS  PubMed  Google Scholar 

  19. Shimojo K, Kurahashi K, Naganawa H (2008) Extraction behavior of lanthanides using a diglycolamide derivative TODGA in ionic liquids. Dalton Trans 37:5083–5088. https://doi.org/10.1039/b810277p

    Article  CAS  Google Scholar 

  20. Feng Y, Wang Y, Wang Y, Zhang X-F, Yao J (2018) In-situ gelation of sodium alginate supported on melamine sponge for efficient removal of copper ions. J Colloid Interface Sci 512:7–13. https://doi.org/10.1016/j.jcis.2017.10.036

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, He Y, Gong A et al (2023) Selective recovery of rare earth metals from acid mine drainage by pyrrolidine diglycolamide silica column. J Environ Chem Eng 11(3):110091. https://doi.org/10.1016/j.jece.2023.110091

    Article  CAS  Google Scholar 

  22. Stewart MB, Gray SR, Vasiljevic T, Orbell JD (2014) Exploring the molecular basis for the metal-mediated assembly of alginate gels. Carbohydr Polym 102:246–253. https://doi.org/10.1016/j.carbpol.2013.11.034

    Article  CAS  PubMed  Google Scholar 

  23. Tran H (2022) Improper estimation of thermodynamic parameters in adsorption studies with distribution coefficient KD (qe/Ce) or Freundlich constant (KF): Conclusions from the derivation of dimensionless thermodynamic equilibrium constant and suggestions. Adsorpt Sci Technol. https://doi.org/10.1155/2022/5553212

    Article  Google Scholar 

  24. Wang W-B, Huang D-J, Kang Y-R, Wang A-Q (2013) One-step in situ fabrication of a granular semi-IPN hydrogel based on chitosan and gelatin for fast and efficient adsorption of Cu2+ ion. Colloids Surf B 106:51–59. https://doi.org/10.1016/j.colsurfb.2013.01.030

    Article  CAS  Google Scholar 

  25. Song D, Park S-J, Kang HW, Park SB, Han J-I (2013) Recovery of Lithium(I), Strontium(II), and Lanthanum(III) Using Ca–Alginate Beads. J Chem Eng Data 58(9):2455–2464. https://doi.org/10.1021/je400317v

    Article  CAS  Google Scholar 

  26. Li W, Ju B, Zhang S (2019) Preparation of cysteamine-modified cellulose nanocrystal adsorbent for removal of mercury ions from aqueous solutions. Cellulose 26(8):4971–4985. https://doi.org/10.1007/s10570-019-02420-1

    Article  CAS  Google Scholar 

  27. Bentouhami E, Bouet GM, Meullemeestre J, Vierling F, Khan MA (2004) Physicochemical study of the hydrolysis of Rare-Earth elements (III) and thorium (IV). C R Chim 7(5):537–545. https://doi.org/10.1016/j.crci.2004.01.008

    Article  CAS  Google Scholar 

  28. Duan G, Yang Y, Cui Y (2006) Study on macromolecular rare earth complexes (IV)—synthesis, characterization and fluorescent properties of rare earth complexes with polymethyl acrylic acid. Synth React Inorg, Met-Org, Nano-Met Chem 36(6):459–463. https://doi.org/10.1080/15533170600777895

    Article  CAS  Google Scholar 

  29. Ijagbemi CO, Baek MH, Kim DS (2010) Adsorptive performance of un-calcined sodium exchanged and acid modified montmorillonite for Ni2+ removal: equilibrium, kinetics, thermodynamics and regeneration studies. J Hazard Mater 174(1–3):746–755. https://doi.org/10.1016/j.jhazmat.2009.09.115

    Article  CAS  PubMed  Google Scholar 

  30. Smitha B, Sridhar S, Khan AA (2005) Chitosan–sodium alginate polyion complexes as fuel cell membranes. Eur Polymer J 41(8):1859–1866. https://doi.org/10.1016/j.eurpolymj.2005.02.018

    Article  CAS  Google Scholar 

  31. Yao Q, Luo Z, Yuan X et al (2014) Assembly of nanoions via electrostatic interactions: ion-like behavior of charged noble metal nanoclusters. Sci Rep 4(1):3848. https://doi.org/10.1038/srep03848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gao X, Liu J, Li M et al (2020) Mechanistic study of selective adsorption and reduction of Au (III) to gold nanoparticles by ion-imprinted porous alginate microspheres. Chem Eng J 385:123897. https://doi.org/10.1016/j.cej.2019.123897

    Article  CAS  Google Scholar 

  33. Wang F, Wang W, Zhu Y, Wang A (2017) Evaluation of Ce(III) and Gd(III) adsorption from aqueous solution using CTS-g-(AA-co-SS)/ISC hybrid hydrogel adsorbent. J Rare Earths 35(7):697–708. https://doi.org/10.1016/S1002-0721(17)60966-9

    Article  CAS  Google Scholar 

  34. Ivanov VA, Gorshkov VI, Timofeevskaja VD, Drozdova NV (1998) Influence of temperature on ion-exchange equilibrium accompanied by complex formation in resins. React Funct Polym 38(2):205–218. https://doi.org/10.1016/S1381-5148(97)00162-4

    Article  CAS  Google Scholar 

  35. Mustafa SJ, Dilara B, Naeem A, Rehana N, Nargis K (2003) Temperature and pH effect on the sorption of divalent metal ions by silica gel. Adsorpt Sci Technol 21:297–307

    Article  CAS  Google Scholar 

  36. Murakami K, Nagatoishi S, Kasahara K et al (2021) Electrostatic-triggered exothermic antibody adsorption to the cellulose nanoparticles. Anal Biochem 632:114337. https://doi.org/10.1016/j.ab.2021.114337

    Article  CAS  PubMed  Google Scholar 

  37. Ashour RM, El-sayed R, Abdel-Magied AF et al (2017) Selective separation of rare earth ions from aqueous solution using functionalized magnetite nanoparticles: kinetic and thermodynamic studies. Chem Eng J 327:286–296. https://doi.org/10.1016/j.cej.2017.06.101

    Article  CAS  Google Scholar 

  38. Li J, Gong A, Qiu L et al (2020) Selective extraction and column separation for 16 kinds of rare earth element ions by using N, N-dioctyl diglycolacid grafted silica gel particles as the stationary phase. J Chromatogr A 1627:461393. https://doi.org/10.1016/j.chroma.2020.461393

    Article  CAS  PubMed  Google Scholar 

  39. Baraka A, Hall PJ, Heslop MJ (2007) Preparation and characterization of melamine–formaldehyde–DTPA chelating resin and its use as an adsorbent for heavy metals removal from wastewater. React Funct Polym 67(7):585–600. https://doi.org/10.1016/j.reactfunctpolym.2007.01.015

    Article  CAS  Google Scholar 

  40. Aida TM, Kumagai Y, Smith RL (2022) Mechanism of selective hydrolysis of alginates under hydrothermal conditions. J Bioresour Bioprod 7(3):173–179. https://doi.org/10.1016/j.jobab.2022.04.001

    Article  CAS  Google Scholar 

  41. Unal Yesiller S, Eroğlu AE, Shahwan T (2013) Removal of aqueous rare earth elements (REEs) using nano-iron based materials. J Ind Eng Chem 19(3):898–907. https://doi.org/10.1016/j.jiec.2012.11.005

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by National Key R&D Program of China No. 2017YFF0106006 and Beijing Natural Science Foundation No. 8172033.

Author information

Authors and Affiliations

Authors

Contributions

YW: Conceptualization, Methodology, Writing-original draft preparation. AG: Project administration, Supervision, Funding acquisition. LQ: Data analysis. YL: Instrumental characterization. YB: Reviewing and Editing. YL: Data analysis. GG: Data analysis. WZ: Data cura-tion. JY: Curation. XH: Data analysis. YC: Data Soft-ware, Validation.

Corresponding author

Correspondence to Aijun Gong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1235 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Gong, A., Qiu, L. et al. Rare Earth Metal Ions Adsorption Using 2-[2-Oxo-2-(1-pyrrolidinyl)ethoxy]acetic acid/Sodium Alginate Gel. J Polym Environ (2024). https://doi.org/10.1007/s10924-023-03169-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-023-03169-2

Keywords

Navigation