Skip to main content
Log in

PAMAM Grafted Magnetic Chitosan Particles by EDTA Core for Efficient Removal of Cu (II)

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Magnetic particles with active groups on their surfaces can be applied to wastewater purification to remove harmful ions, but the insufficient number of active groups on their surfaces tends to limit their removal rate of ions. Herein, we grafted different generations of dendritic macromolecular polyamidoamine (PAMAM) onto the magnetic chitosan microspheres (MCS) using ethylenediamine tetraacetic acid (EDTA) as core (MCEPs) for the removal of Cu (II). Firstly, 7 μm-sized MCS with good dispersibility was prepared by adjusting conditions such as glacial acetic acid content, emulsifier content and raw material ratio. Secondly, the effect of MCEPs generation, pH and contact time on the adsorption capacity were investigated. The adsorption experiments showed that the MCEPs had a high adsorption capacity, when the adsorbent was the second generation of MCEP (MCEP G2.0), the maximum adsorption capacity can up to 702.9 mg/g and the adsorption process can be completed in 60 min. Moreover, among various isotherms models, MCEP G2.0 was well-fitted by Langmuir adsorption isotherm. Also, adsorption kinetic studies proved that the adsorption mechanism of MCEP G2.0 adsorbent followed the pseudo-second-order kinetic model, demonstrating that the process was chemisorption. The adsorbent has renewability as well, after five adsorption cycles, its adsorption efficiency was still higher than 80%. Therefore, the adsorbent showed a superior adsorption capacity and renewability to remove Cu (II).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Ab Hamid NH, Bin Mohd Tahir MIH, Chowdhury A et al (2022) The current state-of-art of copper removal from wastewater: a review. Water 14(19):3086. https://doi.org/10.3390/w14193086

    Article  CAS  Google Scholar 

  2. Zhu G, Yue K, Ni X et al (2023) The types of microplastics, heavy metals, and adsorption environments control the microplastic adsorption capacity of heavy metals. Environ Sci Pollut Res 30(33):80807–80816. https://doi.org/10.1007/s11356-023-28131-6

    Article  CAS  Google Scholar 

  3. Carvalho Barros GKG, Melo RPF, Barros Neto ELD (2018) Removal of copper ions using sodium hexadecanoate by ionic flocculation. Sep Purif Technol 200:294–299. https://doi.org/10.1016/j.seppur.2018.01.062

    Article  CAS  Google Scholar 

  4. Liu Y, Wang H, Cui Y et al (2023) Removal of copper ions from wastewater: a review. Int J Environ Res Public Health 20(5):3885. https://doi.org/10.1016/j.powtec.2021.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Awual MR (2015) A novel facial composite adsorbent for enhanced copper(II) detection and removal from wastewater. Chem Eng J 266:368–375. https://doi.org/10.1016/j.cej.2014.12.094

    Article  CAS  Google Scholar 

  6. Hamilton T, Peng Y (2021) The removal of lead from chalcopyrite surfaces in relation to radionuclide removal from copper minerals. Powder Technol 389:63–74. https://doi.org/10.1016/j.powtec.2021.05.013

    Article  CAS  Google Scholar 

  7. Lenka SP, Shaikh WA, Owens G et al (2021) Removal of copper from water and wastewater using dolochar. Water Air Soil Pollut 232(5):167. https://doi.org/10.1007/s11270-021-05135-x

    Article  CAS  Google Scholar 

  8. Ghorbani F, Kamari S, Askari F et al (2021) Production of nZVI–Cl nanocomposite as a novel eco–friendly adsorbent for efficient As(V) ions removal from aqueous media: adsorption modeling by response surface methodology. Sustain Chem Pharm 21:100437. https://doi.org/10.1016/j.scp.2021.100437

    Article  CAS  Google Scholar 

  9. Awual MR (2017) New type mesoporous conjugate material for selective optical copper(II) ions monitoring & removal from polluted waters. Chem Eng J 307:85–94. https://doi.org/10.1016/j.cej.2016.07.110

    Article  CAS  Google Scholar 

  10. Sessarego S, Rodrigues SCG, Xiao Y et al (2019) Phosphonium-enhanced chitosan for Cr(VI) adsorption in wastewater treatment. Carbohydr Polym 211:249–256. https://doi.org/10.1016/j.carbpol.2019.02.003

    Article  CAS  PubMed  Google Scholar 

  11. Sheikh MC, Hasan MM, Hasan MN et al (2023) Toxic cadmium(II) monitoring and removal from aqueous solution using ligand-based facial composite adsorbent. J Mol Liq 389:122854. https://doi.org/10.1016/j.molliq.2023.122854

    Article  CAS  Google Scholar 

  12. Kubra KT, Salman MS, Hasan MN et al (2021) Utilizing an alternative composite material for effective copper(II) ion capturing from wastewater. J Mol Liq 336:116325. https://doi.org/10.1016/j.molliq.2021.116325

    Article  CAS  Google Scholar 

  13. Jawad AH, Rangabhashiyam S, Abdulhameed AS et al (2022) Process optimization and adsorptive mechanism for reactive blue 19 dye by magnetic crosslinked chitosan/MgO/Fe3O4 biocomposite. J Polym Environ 30(7):2759–2773. https://doi.org/10.1007/s10924-022-02382-9

    Article  CAS  Google Scholar 

  14. Kamari S, Ghorbani F (2017) Synthesis of magMCM-41 with rice husk silica as cadmium sorbent from aqueous solutions: parameters’ optimization by response surface methodology. Environ Technol 38(12):1562–1579. https://doi.org/10.1080/09593330.2016.1237557

    Article  CAS  PubMed  Google Scholar 

  15. Jawad AH, Hameed BH, Abdulhameed AS (2023) Synthesis of biohybrid magnetic chitosan-polyvinyl alcohol/MgO nanocomposite blend for remazol brilliant blue R dye adsorption: solo and collective parametric optimization. Polym Bull 80(5):4927–4947. https://doi.org/10.1007/s00289-022-04294-z

    Article  CAS  Google Scholar 

  16. Malek NNA, Jawad AH, Ismail K et al (2021) Fly ash modified magnetic chitosan-polyvinyl alcohol blend for reactive orange 16 dye removal: adsorption parametric optimization. Int J Biol Macromol 189:464–476. https://doi.org/10.1016/j.ijbiomac.2021.08.160

    Article  CAS  PubMed  Google Scholar 

  17. Liu M, Wang H, Sun H et al (2023) Preparation of magnetic metal-organic framework for adsorption of microcystin-RR. Algal Res 70:102984. https://doi.org/10.1016/j.algal.2023.102984

    Article  Google Scholar 

  18. Gu H, Zhou X, Lyu S et al (2020) Magnetic nanocellulose-magnetite aerogel for easy oil adsorption. J Colloid Interface Sci 560:849–856. https://doi.org/10.1016/j.jcis.2019.10.084

    Article  CAS  PubMed  Google Scholar 

  19. Kamari S, Ghorbani F, Sanati AM (2019) Adsorptive removal of lead from aqueous solutions by amine–functionalized magMCM-41 as a low–cost nanocomposite prepared from rice husk: modeling and optimization by response surface methodology. Sustain Chem Pharm 13:100153. https://doi.org/10.1016/j.scp.2019.100153

    Article  Google Scholar 

  20. Malek NNA, Jawad AH, Abdulhameed AS et al (2020) New magnetic Schiff’s base-chitosan-glyoxal/fly ash/Fe3O4 biocomposite for the removal of anionic azo dye: an optimized process. Int J Biol Macromol 146:530–539. https://doi.org/10.1016/j.ijbiomac.2020.01.020

    Article  CAS  PubMed  Google Scholar 

  21. Sanati AM, Kamari S, Ghorbani F (2019) Application of response surface methodology for optimization of cadmium adsorption from aqueous solutions by Fe3O4@SiO2@APTMS core–shell magnetic nanohybrid. Surf Interfaces 17:100374. https://doi.org/10.1016/j.surfin.2019.100374

    Article  CAS  Google Scholar 

  22. Pylypchuk IV, Kołodyńska D, Kozioł M et al (2016) Gd-DTPA adsorption on chitosan/magnetite nanocomposites. Nanoscale Res Lett 11(1):168. https://doi.org/10.1186/s11671-016-1363-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Velasco-Garduño O, Martínez ME, Gimeno M et al (2020) Copper removal from wastewater by a chitosan-based biodegradable composite. Environ Sci Pollut Res 27(23):28527–28535. https://doi.org/10.1007/s11356-019-07560-2

    Article  CAS  Google Scholar 

  24. Kloster GA, Valiente M, Marcovich NE et al (2020) Adsorption of arsenic onto films based on chitosan and chitosan/nano-iron oxide. Int J Biol Macromol 165:1286–1295. https://doi.org/10.1016/j.ijbiomac.2020.09.244

    Article  CAS  PubMed  Google Scholar 

  25. Lou T, Yan X, Wang X (2019) Chitosan coated polyacrylonitrile nanofibrous mat for dye adsorption. Int J Biol Macromol 135:919–925. https://doi.org/10.1016/j.ijbiomac.2019.06.008

    Article  CAS  PubMed  Google Scholar 

  26. Saheed IO, Oh WD, Suah FBM (2021) Chitosan modifications for adsorption of pollutants—a review. J Hazard Mater 408:124889. https://doi.org/10.1016/j.jhazmat.2020.124889

    Article  CAS  PubMed  Google Scholar 

  27. Vakili M, Deng S, Shen L et al (2019) Regeneration of chitosan-based adsorbents for eliminating dyes from aqueous solutions. Sep Purif Rev 48(1):1–13. https://doi.org/10.1080/15422119.2017.1406860

    Article  CAS  Google Scholar 

  28. Waliullah RM, Rehan AI, Awual ME et al (2023) Optimization of toxic dye removal from contaminated water using chitosan-grafted novel nanocomposite adsorbent. J Mol Liq 388:122763. https://doi.org/10.1016/j.molliq.2023.122763

    Article  CAS  Google Scholar 

  29. Wu R, Abdulhameed AS, Jawad AH et al (2023) Development of a chitosan/nanosilica biocomposite with arene functionalization via hydrothermal synthesis for acid red 88 dye removal. Int J Biol Macromol 252:126342. https://doi.org/10.1016/j.ijbiomac.2023.126342

    Article  CAS  PubMed  Google Scholar 

  30. Molatlhegi O, Alagha L (2017) Adsorption characteristics of chitosan grafted copolymer on kaolin. Appl Clay Sci 150:342–353. https://doi.org/10.1016/j.clay.2017.09.032

    Article  CAS  Google Scholar 

  31. Zhang X, Shi X, Ma L et al (2019) Preparation of chitosan stacking membranes for adsorption of copper ions. Polymers 11(9):1463. https://doi.org/10.3390/polym11091463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu H, Zhang F, Peng Z (2019) Adsorption mechanism of Cr(VI) onto GO/PAMAMs composites. Sci Rep 9(1):3663. https://doi.org/10.1038/s41598-019-40344-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wong KH, Guo Z, Law M-K et al (2023) Functionalized PAMAM constructed nanosystems for biomacromolecule delivery. Biomater Sci 11(5):1589–1606. https://doi.org/10.1039/D2BM01677J

    Article  CAS  PubMed  Google Scholar 

  34. Qin W, Qian G, Tao H et al (2019) Adsorption of Hg(II) ions by PAMAM dendrimers modified attapulgite composites. React Funct Polym 136:75–85. https://doi.org/10.1016/j.reactfunctpolym.2019.01.005

    Article  CAS  Google Scholar 

  35. Sun H, Zhan J, Chen L et al (2023) Preparation of CTS/PAMAM/SA/Ca2+ hydrogel and its adsorption performance for heavy metal ions. Appl Surf Sci 607:155135. https://doi.org/10.1016/j.apsusc.2022.155135

    Article  CAS  Google Scholar 

  36. Sun H, Ji Z, He Y et al (2022) Preparation of PAMAM modified PVDF membrane and its adsorption performance for copper ions. Environ Res 204:111943. https://doi.org/10.1016/j.envres.2021.111943

    Article  CAS  PubMed  Google Scholar 

  37. Cheng R, Kang M, Zhuang S et al (2019) Adsorption of Sr(II) from water by mercerized bacterial cellulose membrane modified with EDTA. J Hazard Mater 364:645–653. https://doi.org/10.1016/j.jhazmat.2018.10.083

    Article  CAS  PubMed  Google Scholar 

  38. Liang M, Guo H, Xiu W (2020) Arsenite oxidation and arsenic adsorption on birnessite in the absence and the presence of citrate or EDTA. Environ Sci Pollut Res 27(35):43769–43785. https://doi.org/10.1007/s11356-020-10292-3

    Article  CAS  Google Scholar 

  39. Luan L, Tang B, Liu Y et al (2022) Direct synthesis of sulfur-decorating PAMAM dendrimer/mesoporous silica for enhanced Hg(II) and Cd(II) adsorption. Langmuir 38(2):698–710. https://doi.org/10.1021/acs.langmuir.1c02547

    Article  CAS  PubMed  Google Scholar 

  40. Pistone A, Iannazzo D, Celesti C et al (2020) Chitosan/PAMAM/hydroxyapatite engineered drug release hydrogels with tunable rheological properties. Polymers 12(4):754. https://doi.org/10.3390/polym12040754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Beltrame KK, Cazetta AL, De Souza PSC et al (2018) Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves. Ecotoxicol Environ Saf 147:64–71. https://doi.org/10.1016/j.ecoenv.2017.08.034

    Article  CAS  PubMed  Google Scholar 

  42. Li X, Wu G, Chen J et al (2017) Low-crystallinity molybdenum sulfide nanosheets assembled on carbon nanotubes for long-life lithium storage: unusual electrochemical behaviors and ascending capacities. Appl Surf Sci 392:297–304. https://doi.org/10.1016/j.apsusc.2016.09.055

    Article  CAS  Google Scholar 

  43. Ghoochian M, Panahi HA, Sobhanardakani S et al (2019) Synthesis and application of Fe3O4/SiO2/thermosensitive/PAMAM-CS nanoparticles as a novel adsorbent for removal of tamoxifen from water samples. Microchem J 145:1231–1240. https://doi.org/10.1016/j.microc.2018.12.004

    Article  CAS  Google Scholar 

  44. Hu X, Li G, Lin Y (2018) A novel high-capacity immunoadsorbent with PAMAM dendritic spacer arms by click chemistry. New J Chem 42(19):15726–15732. https://doi.org/10.1039/C8NJ02142B

    Article  CAS  Google Scholar 

  45. Islam MA, Ali I, Karim SMA et al (2019) Removal of dye from polluted water using novel nano manganese oxide-based materials. J Water Process Eng 32:100911. https://doi.org/10.1016/j.jwpe.2019.100911

    Article  Google Scholar 

  46. Crini G, Peindy HN, Gimbert F et al (2007) Removal of C.I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: kinetic and equilibrium studies. Sep Purif Technol 53(1):97–110. https://doi.org/10.1016/j.seppur.2006.06.018

    Article  CAS  Google Scholar 

  47. He J, Lin R, Long H et al (2015) Adsorption characteristics of amino acids on to calcium oxalate. J Colloid Interface Sci 454:144–151. https://doi.org/10.1016/j.jcis.2015.02.014

    Article  CAS  PubMed  Google Scholar 

  48. Ren B, Wang K, Zhang B et al (2019) Adsorption behavior of PAMAM dendrimers functionalized silica for Cd(II) from aqueous solution: experimental and theoretical calculation. J Taiwan Inst Chem Eng 101:80–91. https://doi.org/10.1016/j.jtice.2019.04.037

    Article  CAS  Google Scholar 

  49. Li H, Niu Y, Xue Z et al (2019) Adsorption property and mechanism of PAMAM dendrimer/silica gel hybrids for Fe(III) and Ag(I) from N, N-dimethylformamide. J Mol Liq 273:305–313. https://doi.org/10.1016/j.molliq.2018.10.039

    Article  CAS  Google Scholar 

  50. Deng H, Mao Z, Xu H et al (2019) Synthesis of fibrous LaFeO3 perovskite oxide for adsorption of Rhodamine B. Ecotoxicol Environ Saf 168:35–44. https://doi.org/10.1016/j.ecoenv.2018.09.056

    Article  CAS  PubMed  Google Scholar 

  51. Wang Y, Lu Q (2020) Dendrimer functionalized nanocrystalline cellulose for Cu(II) removal. Cellulose 27(4):2173–2187. https://doi.org/10.1007/s10570-019-02919-7

    Article  CAS  Google Scholar 

  52. Ilaiyaraja P, Singha Deb AK, Sivasubramanian K et al (2013) Adsorption of uranium from aqueous solution by PAMAM dendron functionalized styrene divinylbenzene. J Hazard Mater 250–251:155–166. https://doi.org/10.1016/j.jhazmat.2013.01.040

    Article  CAS  PubMed  Google Scholar 

  53. Ma J, Xia M, Zhu S et al (2020) A new alendronate doped HAP nanomaterial for Pb2+, Cu2+ and Cd2+ effect absorption. J Hazard Mater 400:123143. https://doi.org/10.1016/j.jhazmat.2020.123143

    Article  CAS  PubMed  Google Scholar 

  54. Sun H, Zhang X, He Y et al (2019) Preparation of PVDF-g-PAA-PAMAM membrane for efficient removal of copper ions. Chem Eng Sci 209:115186. https://doi.org/10.1016/j.ces.2019.115186

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Jilin Scientific and Technological Development Program (No. 20220201108GX and No. 20210201067GX).

Funding

Funding was provided by Jilin Scientific and Technological Development Program (Grant no. 20220201108GX).

Author information

Authors and Affiliations

Authors

Contributions

RW: Conceptualization, Methodology, Investigation, Data curation, Formal analysis, Writing— original draft. XS: Methodology, Investigation. LL: Supervision, Validation, Funding acquisition. CZ: Supervision, Project administration. GW: Writing—review & editing, Supervision, Funding acquisition, Resources.

Corresponding authors

Correspondence to Li Liu or Guangfeng Wu.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships could have appeared to influence the work reported in paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 291 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Song, X., Liu, L. et al. PAMAM Grafted Magnetic Chitosan Particles by EDTA Core for Efficient Removal of Cu (II). J Polym Environ (2024). https://doi.org/10.1007/s10924-023-03164-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-023-03164-7

Keywords

Navigation