Skip to main content
Log in

Redefining Construction: An In-Depth Review of Sustainable Polyurethane Applications

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The construction sector is a prominent resource-intensive industry on a global scale, contributing significantly to environmental challenges through material production and construction operations. Selecting sustainable and energy-efficient building materials is crucial, considering green sustainable construction. Over the past two decades, polyurethane (PU) technology has experienced remarkable progress and is emerging as a versatile alternative to traditional building materials, but concerns still arise due to the petrochemical origins of the PU feedstocks. This increasing demand for eco-friendly building materials has spurred significant advancements in the research, development, and utilization of bio-based polyurethane (BPU) within the construction industry. Responding to the global shift towards sustainable development, this study aims to systematically identify bio-based and sustainable sources of PU, analyse advancements in production processes, and evaluate their properties compared to conventional materials. The purpose of this study is addressed by conducting a literature review, wherein findings from a diverse range of current studies in the field are compiled and the specific application areas covered are PU foam, coating, sealants, concrete systems, adhesives and road construction. The results suggest that BPU present various possibilities, benefits, and challenges. The review underscores BPU as a sustainable alternative with comparable properties to traditional counterparts with insights into BPU market highlighting a promising future in construction. By highlighting potential challenges, this review emphasises avenues for new research. Providing a comprehensive analysis of BPU sources, performance, and applications in construction, it would serve as a valuable resource for researchers, aiding in identifying unexplored research areas, fostering industry collaborations, and recognizing the expanding scope of BPU in the field.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. statista. Polyurethane global market volume 2030 (2023). https://www.statista.com/statistics/720341/global-polyurethane-market-size-forecast/

  2. Szycher (2000) Szycher’s handbook of polyurethanes by Michael Szycher (Cardiotech International, Inc.). CRC Press, Boca Raton, FL. 1999. xviii + 673 pp. $129.95. ISBN 0-8493-0602-7. J Am Chem Soc 122:3983. https://doi.org/10.1021/ja004704k

    Article  CAS  Google Scholar 

  3. Somarathna H, Raman S, Mohotti D, Mutalib A, Badri K (2018) The use of polyurethane for structural and infrastructural engineering applications: a state-of-the-art review. Constr Build Mater 190:995–1014

    Article  CAS  Google Scholar 

  4. Das A, Mahanwar P (2020) A brief discussion on advances in polyurethane applications. Adv Ind Eng Polym Res 3:93–101

    Google Scholar 

  5. Li L, Yu T (2022) Curing comparison and performance investigation of polyurethane concrete with retarders. Constr Build Mater 326:126883

    Article  CAS  Google Scholar 

  6. Horvath A (2004) Construction materials and the environment. Annu Rev Environ Resour 29:181–204

    Article  Google Scholar 

  7. Petkar S (2014) Environmental impact of construction materials and practices. PhD Thesis, YCCE, Nagpur

  8. Claisse PA (2016) Chapter 17 - Introduction to cement and concrete In: Claisse PA (ed) Civil engineering materials. Butterworth Heinemann, Boston, pp 155–162. https://www.sciencedirect.com/science/article/pii/B9780081002759000176

  9. Ingham JP (2013) 5—Concrete. In: Ingham JP (ed) Geomaterials under the microscope. Academic Press, Boston, pp 75–120

    Chapter  Google Scholar 

  10. Lim C et al (2020) Global trend of cement production and utilization of circular resources. J Energy Eng 29:57–63

    Google Scholar 

  11. Huang B et al (2020) A life cycle thinking framework to mitigate the environmental impact of building materials. One Earth 3:564–573

    Article  Google Scholar 

  12. Garside M (2022) Cement production global 2021. https://www.statista.com/statistics/1087115/global-cement-production-volume/

  13. Andrew RM (2018) Global CO2 emissions from cement production. Earth Syst Sci Data 10:195–217

    Article  Google Scholar 

  14. Czarnecki L, Kaproń M, Van Gemert D (2013) Sustainable construction: challenges, contribution of polymers, research arena. Restor Build Monum 19:81–96

    Google Scholar 

  15. Lu G et al (2019) Development of a sustainable pervious pavement material using recycled ceramic aggregate and bio-based polyurethane binder. J Clean Prod 220:1052–1060

    Article  CAS  Google Scholar 

  16. Ahmad W, Ahmad A, Ostrowski KA, Aslam F, Joyklad P (2021) A scientometric review of waste material utilization in concrete for sustainable construction. Case Stud Constr Mater 15:e00683

    Google Scholar 

  17. Report I (2020) Global energy-related CO2 emissions by sector, 2020—charts - data & statistics. https://www.iea.org/data-and-statistics/charts/global-energy-related-co2-emissions-by-sector-2020

  18. 2022 I (2022) Cement, IEA report, Paris. https://www.iea.org/reports/cement

  19. Murtagh N, Scott L, Fan J (2020) Sustainable and resilient construction: current status and future challenges. J Clean Prod 268:122264

    Article  Google Scholar 

  20. Alyousef R et al (2021) Potential use of recycled plastic and rubber aggregate in cementitious materials for sustainable construction: a review. J Clean Prod 329:129736

    Article  CAS  Google Scholar 

  21. Viswanath P (2007) Development of polymer cement composites. PhD Thesis, CiteSeer

  22. Kiruthika C, Prabha SL, Neelamegam M (2021) Different aspects of polyester polymer concrete for sustainable construction. Mater Today Proc 43:1622–1625

    Article  CAS  Google Scholar 

  23. Irfan M (2012) Chemistry and technology of thermosetting polymers in construction applications. Springer Science & Business Media, Berlin

    Google Scholar 

  24. Sarde B, Patil Y (2019) Recent research status on polymer composite used in concrete—an overview. Mater Today Proc 18:3780–3790

    Article  CAS  Google Scholar 

  25. WOC CTM (2023) Biobased polyurethane in construction. https://www.worldofchemicals.com/media/biobased-polyurethane-in-construction/330.html

  26. Yadav M, Agarwal M (2021) Biobased building materials for sustainable future: an overview. Mater Today Proc 43:2895–2902

    Article  CAS  Google Scholar 

  27. Research GV (2023) Bio-based polyurethane market size and share [2023 report]. https://www.grandviewresearch.com/industry-analysis/bio-based-polyurethane-industry

  28. Peyrton J, Avérous L (2021) Structure-properties relationships of cellular materials from biobased polyurethane foams. Mater Sci Eng R Rep 145:100608

    Article  Google Scholar 

  29. Pfister DP, Xia Y, Larock RC (2011) Recent advances in vegetable oil-based polyurethanes. ChemSusChem 4:703–717

    Article  CAS  PubMed  Google Scholar 

  30. Calderón V, Gutiérrez-González S, Gadea J, Ángel Rodríguez Junco C (2018) 10—construction applications of polyurethane foam wastes. In: Thomas S, Rane AV, Kanny K, Abitha VK, Thomas MG (eds) Recycling of polyurethane foams plastics design library. William Andrew Publishing, Oxford, pp 115–125

    Chapter  Google Scholar 

  31. Akindoyo JO et al (2016) Polyurethane types, synthesis and applications—a review. RSC Adv 6:114453–114482

    Article  CAS  Google Scholar 

  32. Gama NV, Ferreira A, Barros-Timmons A (2018) Polyurethane foams: past, present, and future. Materials 11:1841

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li X et al (2021) Recent applications and developments of polyurethane materials in pavement engineering. Constr Build Mater 304:124639

    Article  CAS  Google Scholar 

  34. Krishnadevi K, Devaraju S, Sriharshitha S, Alagar M, Keerthi Priya Y (2020) Environmentally sustainable rice husk ash reinforced cardanol based polybenzoxazine bio-composites for insulation applications. Polym Bull 77:2501–2520

    Article  CAS  Google Scholar 

  35. Chiacchiarelli L (2019) 8–sustainable, nanostructured, and bio-based polyurethanes for energy-efficient sandwich structures applied to the construction industry. In: Verma D, Fortunati E, Jain S, Zhang X (eds) Biomass, biopolymer-based materials, and bioenergy. Woodhead Publishing series in composites science and engineering. Woodhead Publishing, Sawston, pp 135–160

    Chapter  Google Scholar 

  36. Miao S, Wang P, Su Z, Zhang S (2014) Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomater 10:1692–1704

    Article  CAS  PubMed  Google Scholar 

  37. Petrović ZS (2008) Polyurethanes from vegetable oils. Polym Rev 48:109–155

    Article  Google Scholar 

  38. Zhang C, Madbouly SA, Kessler MR (2015) Biobased polyurethanes prepared from different vegetable oils. ACS Appl Mater Interfaces 7:1226–1233

    Article  CAS  PubMed  Google Scholar 

  39. Maisonneuve L, Chollet G, Grau E, Cramail H (2016) Vegetable oils: a source of polyols for polyurethane materials. OCL 23:D508

    Article  Google Scholar 

  40. Moreno DC, Velasco MA, Malagon-Romero DH (2020) Production of polyurethanes from used vegetable oil-based polyols. Chem Eng Trans 79:337–342

    Google Scholar 

  41. Yang Y et al (2023) Valorization of lignin for renewable non-isocyanate polyurethanes: a state-of-the-art review. Mater Today Sustain 22:100367

    Article  Google Scholar 

  42. Khatoon H, Iqbal S, Irfan M, Darda A, Rawat NK (2021) A review on the production, properties and applications of non-isocyanate polyurethane: a greener perspective. Prog Org Coat 154:106124

    Article  CAS  Google Scholar 

  43. Ma Y et al (2022) Biomass based polyols and biomass based polyurethane materials as a route towards sustainability. React Funct Polym 175:105285

    Article  CAS  Google Scholar 

  44. Desroches M, Escouvois M, Auvergne R, Caillol S, Boutevin B (2012) From vegetable oils to polyurethanes: synthetic routes to polyols and main industrial products. Polym Rev 52:38–79

    Article  CAS  Google Scholar 

  45. Fridrihsone A, Romagnoli F, Kirsanovs V, Cabulis U (2020) Life cycle assessment of vegetable oil based polyols for polyurethane production. J Clean Prod 266:121403

    Article  CAS  Google Scholar 

  46. Xia Y, Larock RC (2010) Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green Chem 12:1893–1909

    Article  CAS  Google Scholar 

  47. de Carvalho JPRG et al (2022) Methodological analysis of composites green polyurethane resin reinforced with jute fabric. Case Stud Constr Mater 17:e01512

    Google Scholar 

  48. Sardon H, Mecerreyes D, Basterretxea A, Averous L, Jehanno C (2021) From lab to market: current strategies for the production of biobased polyols. ACS Sustain Chem Eng 9:10664–10677

    Article  CAS  Google Scholar 

  49. Morales-Cerrada R, Tavernier R, Caillol S (2021) Fully bio-based thermosetting polyurethanes from bio-based polyols and isocyanates. Polymers 13:1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Phung Hai TA et al (2021) Renewable polyurethanes from sustainable biological precursors. Biomacromolecules 22:1770–1794

    Article  CAS  PubMed  Google Scholar 

  51. Simón D, Borreguero A, De Lucas A, Rodríguez J (2018) Recycling of polyurethanes from laboratory to industry, a journey towards the sustainability. Waste Manag 76:147–171

    Article  PubMed  Google Scholar 

  52. Kemona A, Piotrowska M (2020) Polyurethane recycling and disposal: methods and prospects. Polymers 12:1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fonseca LP et al (2023) Reducing the carbon footprint of polyurethanes by chemical and biological depolymerization: fact or fiction? Curr Opin Green Sustain Chem 41:100802

    Article  Google Scholar 

  54. Suttie E et al (2017) 9–environmental assessment of bio-based building materials. In: Jones D, Brischke C (eds) Performance of bio-based building materials. Woodhead Publishing, Sawston, pp 547–591

    Chapter  Google Scholar 

  55. Wray HE, Luzzi S, D’Arrigo P, Griffini G (2023) Life cycle environmental impact considerations in the design of novel biobased polyurethane coatings. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.3c00619

    Article  Google Scholar 

  56. Final report summary—BIOPURFIL (bio-based polyurethane composites with natural fillers) (2023). https://cordis.europa.eu/project/id/318996/reporting/fr

  57. BIOMAT TB (2023). https://www.biomat-testbed.eu/biomat-open-innovation-test-bed

  58. Territorial circular ecosystems for end-of-life foam (circular foam) circularise (2023). https://www.circularise.com/resource/systemic-expansion-of-territorial-circular-ecosystems-for-end-of-life-foam-circular-foam

  59. Covestro home (2023). https://www.covestro.com/en

  60. WeylChem | fine chemical products & services | fine chemical company - WeylChem - WeylChem (2023). https://www.weylchem.com/

  61. BASF - INDIA (2023). https://www.basf.com/in/en.html

  62. Dow home (2023). https://www.dow.com/en-us.html

  63. Andersons J, Kirpluks M, Cabulis P, Kalnins K, Cabulis U (2020) Bio-based rigid high-density polyurethane foams as a structural thermal break material. Constr Build Mater 260:120471

    Article  CAS  Google Scholar 

  64. Manalo A (2013) Structural behaviour of a prefabricated composite wall system made from rigid polyurethane foam and magnesium oxide board. Constr Build Mater 41:642–653

    Article  Google Scholar 

  65. Sharafi P, Nemati S, Samali B, Ghodrat M (2018) Development of an innovative modular foam-filled panelized system for rapidly assembled postdisaster housing. Buildings 8:97

    Article  Google Scholar 

  66. Germán-Ayuso L, Cuevas JM, Cobos R, Marcos-Fernández A, Vilas-Vilela JL (2022) Functional properties of coatings based on novel waterborne polyurethane dispersions with green cosolvents. Prog Org Coat 173:107218

    Article  Google Scholar 

  67. Raychura AJ, Jauhari S, Prajapati VS, Dholakiya BZ (2018) Synthesis and performance evaluation of vegetable oil based wood finish polyurethane coating. Bioresour Technol Rep 3:88–94

    Article  Google Scholar 

  68. Godinho B, Gama N, Barros-Timmons A, Ferreira A (2021) Recycling of different types of polyurethane foam wastes via acidolysis to produce polyurethane coatings. Sustain Mater Technol 29:e00330

    CAS  Google Scholar 

  69. Patil CK et al (2021) Chemical transformation of renewable algae oil to polyetheramide polyols for polyurethane coatings. Prog Org Coat 151:106084

    Article  CAS  Google Scholar 

  70. Mahajan MS, Gite VV (2022) Self-healing polyurethane coatings of eugenol-based polyol incorporated with linseed oil encapsulated cardanol-formaldehyde microcapsules: a sustainable approach. Prog Org Coat 162:106534

    Article  CAS  Google Scholar 

  71. Zhou M et al (2022) Castor oil-based transparent and omniphobic polyurethane coatings with high hardness, anti-smudge and anti-corrosive properties. Prog Org Coat 172:107120

    Article  CAS  Google Scholar 

  72. Chen B, Liao M, Sun J, Shi S (2023) A novel biomass polyurethane-based composite coating with superior radiative cooling, anti-corrosion and recyclability for surface protection. Prog Org Coat 174:107250

    Article  CAS  Google Scholar 

  73. Somarathna H, Raman S, Mohotti D, Mutalib A, Badri K (2021) Behaviour of concrete specimens retrofitted with bio-based polyurethane coatings under dynamic loads. Constr Build Mater 270:121860

    Article  CAS  Google Scholar 

  74. Ding H, Wang J, Wang C, Chu F (2016) Synthesis of a novel phosphorus and nitrogen-containing bio-based polyols and its application in flame retardant polyurethane sealant. Polym Degrad Stab 124:43–50

    Article  CAS  Google Scholar 

  75. Rabello LG, da Conceição Ribeiro RC (2021) A novel vermiculite/vegetable polyurethane resin-composite for thermal insulation eco-brick production. Composites B 221:109035

    Article  CAS  Google Scholar 

  76. Rabello LG, da Conceição Ribeiro RC (2022) Bio-based polyurethane resin: an ecological binder for a novel class of building materials-composites. Mater Lett 311:131566

    Article  CAS  Google Scholar 

  77. Gamit N, Sarde B, Patil YD, Dholakiya BZ (2023) A novel approach towards the use of an agro-industrial waste-based polymer composite delineated from palm oil fuel ash and red mud for sustainable construction applications. Asian J Civ Eng. https://doi.org/10.1007/s42107-023-00642-0

    Article  Google Scholar 

  78. Mounanga P, Gbongbon W, Poullain P, Turcry P (2008) Proportioning and characterization of lightweight concrete mixtures made with rigid polyurethane foam wastes. Cement Concr Compos 30:806–814

    Article  CAS  Google Scholar 

  79. Arroyo R, Horgnies M, Junco C, Rodríguez A, Calderón V (2019) Lightweight structural eco-mortars made with polyurethane wastes and non-ionic surfactants. Constr Build Mater 197:157–163

    Article  CAS  Google Scholar 

  80. Junco C, Gadea J, Rodríguez A, Gutiérrez-González S, Calderón V (2012) Durability of lightweight masonry mortars made with white recycled polyurethane foam. Cement Concr Compos 34:1174–1179

    Article  CAS  Google Scholar 

  81. Jiang W et al (2021) Effect of crumb rubber powder on mechanical properties and pore structure of polyurethane-based polymer mortar for repair. Constr Build Mater 309:125169

    Article  CAS  Google Scholar 

  82. Meng Y et al (2022) Research on modification mechanism and performance of an innovative bio-based polyurethane modified asphalt: a sustainable way to reducing dependence on petroleum asphalt. Constr Build Mater 350:128830

    Article  CAS  Google Scholar 

  83. Xia L, Cao D, Zhang H, Guo Y (2016) Study on the classical and rheological properties of castor oil-polyurethane pre polymer (C-PU) modified asphalt. Constr Build Mater 112:949–955

    Article  CAS  Google Scholar 

  84. Liu J, Lv S, Peng X, Yang S (2021) Improvements on performance of bio-asphalt modified by castor oil-based polyurethane: an efficient approach for bio-oil utilization. Constr Build Mater 305:124784

    Article  CAS  Google Scholar 

  85. Kök BV, Aydoğmuş E, Yilmaz M, Akpolat M (2021) Investigation on the properties of new palm-oil-based polyurethane modified bitumen. Constr Build Mater 289:123152

    Article  Google Scholar 

  86. Gama N, Ferreira A, Barros-Timmons A (2019) Cure and performance of castor oil polyurethane adhesive. Int J Adhes Adhes 95:102413

    Article  Google Scholar 

  87. Beran R, Zárybnická L, Machová D, Večeřa M, Kalenda P (2021) Wood adhesives from waste-free recycling depolymerisation of flexible polyurethane foams. J Clean Prod 305:127142

    Article  CAS  Google Scholar 

  88. Alsuhaibani AM et al (2023) Green buildings model: impact of rigid polyurethane foam on indoor environment and sustainable development in energy sector. Heliyon 9:e14451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhu M et al (2021) Recent advances in fire-retardant rigid polyurethane foam. J Mater Sci Technol 112:315–328

    Article  Google Scholar 

  90. Visakh P, Semkin A, Rezaev I, Fateev A (2019) Review on soft polyurethane flame retardant. Constr Build Mater 227:116673

    Article  CAS  Google Scholar 

  91. Alinejad M et al (2019) Lignin-based polyurethanes: opportunities for bio-based foams, elastomers, coatings and adhesives. Polymers 11:1202

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kuranchie C, Yaya A, Bensah YD (2021) The effect of natural fibre reinforcement on polyurethane composite foams—a review. Sci Afr 11:e00722

    CAS  Google Scholar 

  93. Deroubaix A et al (2021) Large uncertainties in trends of energy demand for heating and cooling under climate change. Nat Commun 12:5197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Technology S (2021) Polyurethane durability and building durability. https://blog.synthesia.com/en/polyurethane-durability-buildings

  95. Garrido M, Correia JR, Keller T (2016) Effect of service temperature on the shear creep response of rigid polyurethane foam used in composite sandwich floor panels. Constr Build Mater 118:235–244

    Article  CAS  Google Scholar 

  96. Oliveira PR, May M, Panzera TH, Hiermaier S (2022) Bio-based/green sandwich structures: a review. Thin-Walled Struct 177:109426

    Article  Google Scholar 

  97. Murmu SB (2022) Alternatives derived from renewable natural fibre to replace conventional polyurethane rigid foam insulation. Clean Eng Technol 8:100513

    Article  Google Scholar 

  98. Paraskar PM, Prabhudesai MS, Hatkar VM, Kulkarni RD (2021) Vegetable oil based polyurethane coatings—a sustainable approach: a review. Prog Org Coat 156:106267

    Article  CAS  Google Scholar 

  99. Wang H et al (2020) A comparative study on UV degradation of organic coatings for concrete: structure, adhesion, and protection performance. Prog Org Coat 149:105892

    Article  CAS  Google Scholar 

  100. Shen D et al (2018) Development of shape memory polyurethane based sealant for concrete pavement. Constr Build Mater 174:474–483

    Article  CAS  Google Scholar 

  101. Hameed AM, Hamza MT (2019) Characteristics of polymer concrete produced from wasted construction materials. Energy Procedia 157:43–50

    Article  CAS  Google Scholar 

  102. Fan G et al (2022) Research on working performance of waterborne aliphatic polyurethane modified concrete. J Build Eng 51:104262

    Article  Google Scholar 

  103. Al-kahtani M, Zhu H, Ibrahim YE, Haruna S (2022) Experimental study on the strength and durability-related properties of ordinary Portland and rapid hardening Portland cement mortar containing polyurethane binder. Case Stud Constr Mater 17:e01530

    Google Scholar 

  104. Haruna SI, Zhu H, Jiang W, Shao J (2021) Evaluation of impact resistance properties of polyurethane-based polymer concrete for the repair of runway subjected to repeated drop-weight impact test. Constr Build Mater 309:125152

    Article  Google Scholar 

  105. Tang J, Liu J, Yu C, Wang R (2017) Influence of cationic polyurethane on mechanical properties of cement based materials and its hydration mechanism. Constr Build Mater 137:494–504

    Article  CAS  Google Scholar 

  106. Hussain HK, Liu GW, Yong YW (2014) Experimental study to investigate mechanical properties of new material polyurethane-cement composite (PUC). Constr Build Mater 50:200–208

    Article  Google Scholar 

  107. Yew MK et al (2022) Performance of surface modification on bio-based aggregate for high strength lightweight concrete. Case Stud Constr Mater 16:e00910

    Google Scholar 

  108. Wu F, Yu Q, Liu C (2022) Creep characteristics and constitutive model of bio-based concrete in aqueous environment. Constr Build Mater 320:126213

    Article  Google Scholar 

  109. Gadea J, Rodríguez A, Campos P, Garabito J, Calderón V (2010) Lightweight mortar made with recycled polyurethane foam. Cement Concr Compos 32:672–677

    Article  CAS  Google Scholar 

  110. Zhao Y, Gong X, Liu Q (2023) Research on rheological properties and modification mechanism of waterborne polyurethane modified bitumen. Constr Build Mater 371:130775

    Article  CAS  Google Scholar 

  111. Huang G, Yang T, He Z, Yu L, Xiao H (2022) Polyurethane as a modifier for road asphalt: a literature review. Constr Build Mater 356:129058

    Article  CAS  Google Scholar 

  112. Sizirici B, Fseha Y, Cho C-S, Yildiz I, Byon Y-J (2021) A review of carbon footprint reduction in construction industry, from design to operation. Materials 14:6094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Marson A, Masiero M, Modesti M, Scipioni A, Manzardo A (2021) Life cycle assessment of polyurethane foams from polyols obtained through chemical recycling. ACS Omega 6:1718–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Manzardo A et al (2019) Life cycle assessment framework to support the design of biobased rigid polyurethane foams. ACS Omega 4:14114–14123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Noreen A, Zia KM, Zuber M, Tabasum S, Zahoor AF (2016) Bio-based polyurethane: an efficient and environment friendly coating systems: a review. Prog Org Coat 91:25–32

    Article  CAS  Google Scholar 

  116. Salzano de Luna M (2022) Recent trends in waterborne and bio-based polyurethane coatings for corrosion protection. Adv Mater Interfaces 9:2101775

    Article  CAS  Google Scholar 

  117. Islam S, Walport E, Hart T, Firth R (2021) Circular biobased construction in the North East and Yorkshire (United Kingdom). https://www.ynylep.com/Portals/0/adam/Stories/dZPBWh5Fz0mcAqqNaH1neA/Body/211021_MC2105_NEY_REPORT_FINAL_ISSUE_SPREADS_COMPRESSED.pdf

  118. Rosenboom J-G, Langer R, Traverso G (2022) Bioplastics for a circular economy. Nat Rev Mater 7:117–137

    Article  PubMed  PubMed Central  Google Scholar 

  119. Eggum RA, Gjerde IE, Lundwall LO (2020) Bio-based materials for sustainable concrete. PhD Thesis

  120. Mitsui chemicals (2023). https://www.mitsuichemicals.com/index.htm

  121. Innovative partnership of Selena group and Covestro (2023). https://selena.com/en/innovative-partnership-of-selena-group-and-covestro/

  122. Fruit stone powders—biopowder (2023). https://www.bio-powder.com/en/

  123. Kaur R, Singh P, Tanwar S, Varshney G, Yadav S (2022) Assessment of bio-based polyurethanes: perspective on applications and bio-degradation. Macromol 2:284–314

    Article  CAS  Google Scholar 

  124. Keena N et al (2022) A life-cycle approach to investigate the potential of novel biobased construction materials toward a circular built environment. Energies 15:7239

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

MM: conceptualization, structuring, literature search, review writing and editing. VP: structuring, editing and grammar check, guidance and support. BZD: conceptualization, structuring, editing and grammar check, guidance and support.

Corresponding author

Correspondence to Bharatkumar Z. Dholakiya.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mistry, M., Prajapati, V. & Dholakiya, B.Z. Redefining Construction: An In-Depth Review of Sustainable Polyurethane Applications. J Polym Environ (2024). https://doi.org/10.1007/s10924-023-03161-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-023-03161-w

Keywords

Navigation