Abstract
Poly(butylene adipate-co-terephthalate) (PBAT) foam is regarded as one of the ideal alternatives to petroleum-based polymer foams in view of its advantages of lightweight, high elasticity, biodegradability and biocompatibility, while the problem of shrinkage after foaming has seriously limited its application in industry. In this paper, the no-shrinkage chain-extend PBAT-glycerin monostearate (GMS) foams with ultra-high volume expansion ratio (VER) were prepared by scCO2-assisted molten foaming method. The chain extension reaction between PBAT and chain extender (CE) were investigated by torque curves, gel fraction and FTIR measurements. Comparing with torqued PBAT, the storage modulus of CE-PBAT2 specimen increased 3 orders of magnitude and their crystallization temperature rose from 72.5 to 87.2 ℃. Furthermore, the addition of GMS was beneficial to enhance the dimensional stability of CE-PBAT foams. When 2 phr CE and 2.5 phr GMS were incorporated into PBAT, CEPBAT-GMS2.5 foam attained ultra-high VER of 25.38 times, resilience ratio of 87% with no-shrinkage, which revealed admirable compression and resilience properties. In conclusion, this study provided a feasible new method for improving the VER and dimensional stability of PBAT foams.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Mohanty AK, Vivekanandhan S, Pin JM, Misra M (2018) Composites from renewable and sustainable resources: challenges and innovations. Science 362(6414):536–542
Barboza LGA, Lopes C, Oliveira P, Bessa F, Otero V, Henriques B, Raimundo J, Caetano M, Vale C, Guilhermino L (2020) Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. Sci Total Environ 717:134625
Delacuvellerie A, Benali S, Cyriaque V, Moins S, Raquez JM, Gobert S, Wattiez R (2021) Microbial biofilm composition and polymer degradation of compostable and non-compostable plastics immersed in the marine environment. J Hazard Mater 419:126526
Elvers D, Song CH, Steinbuchel A, Leker J (2016) Technology trends in biodegradable polymers: evidence from patent analysis. Polym Rev 56(4):584–606
Alvarez I, Gutierrez C, Rodriguez JF, de Lucas A, Garcia MT (2020) Production of drug-releasing biodegradable microporous scaffold impregnated with gemcitabine using a CO2 foaming process. J CO2 Util 41:101227
Hong SH, Hwang SH (2022) Construction and characterization of biodegradable foam from high-content lignin-reinforced poly(butylene adipate-coterephthalate) biocomposites. ACS Appl Polym Mater 4(3):1775–1783
De Hoe GX, Zumstein MT, Getzinger GJ, Ruegsegger I, Kohler HE, Maurer-Jones MA, Sander M, Hillmyer MA, McNeill K (2019) Photochemical transformation of poly(butyleneadipate-co-terephthalate) and its effects on enzymatic hydrolyzability. Environ Sci Technol 53(5):2472–2481
Dou Q, Cai J (2016) Investigation on polylactide (PLA)/poly(butylene adipate-co-terephthalate) (PBAT)/bark flour of plane tree (PF) eco-composites. Materials 9(5):393
Haider TP, Volker C, Kramm J, Landfester K, Wurm FR (2019) Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew Chem Int Ed 58(1):50–62
Tian H, Wang Z, Jia S, Pan H, Han L, Bian J, Li Y, Yang H, Zhang H (2022) Biodegradable foaming material of poly(butylene adipate-co-terephthalate) (PBAT)/poly(propylene carbonate) (PPC). Chin J Polym Sci 40(2):208–219
Long H, Xu H, Shaoyu J, Jiang T, Zhuang W, Li M, Jin J, Ji L, Ying H, Zhu C (2023) High-strength bio-degradable polymer foams with stable high volume-expansion ratio using chain extension and green supercritical mixed-gas foaming. Polymers 15(4):895
Wei X, Cui W, Zheng K, Wang J, Hu J, Zhou H (2022) Bimodal cellular structure evolution in PBAT foams incorporated by carbon nanotubes and graphene nanosheets. J Polym Environ 30(7):2785–2799
Gao X, Chen Y, Chen P, Xu Z, Zhao L, Hu D (2022) Supercritical CO2 foaming and shrinkage resistance of thermoplastic polyurethane/modified magnesium borate whisker composite. J CO2 Util 57:101887
Zhang H, Liu T, Li B, Li H, Cao Z, Jin G, Zhao L, Xin Z (2020) Anti-shrinking foaming of polyethylene with CO2 as blowing agent. J Supercrit Fluids 163:104883
Wang Z, Zhao J, Wang G, Xu Z, Zhang A, Dong G, Zhao G (2022) Lightweight, low-shrinkage and high elastic poly(butylene adipate-co-terephthalate) foams achieved by microcellular foaming using N2 & CO2 as co-blowing agents. J CO2 Util 64:102149
Hu D, Xue K, Liu Z, Xu Z, Zhao L (2022) The essential role of PBS on PBAT foaming under supercritical CO2 toward green engineering. J CO2 Util 60:101965
Cui Y, Luo J, Deng Y, Wang X, Zhou H (2021) Effect of acetylated cellulose nanocrystals on solid-state foaming behaviors of chain-extended poly(butylene adipate-co-terephthalate). J Vinyl Addit Technol 27(4):722–735
Song J, Mi J, Zhou H, Wang X, Zhang Y (2018) Chain extension of poly(butylene adipate-co-terephthalate) and its microcellular foaming behaviors. Polym Degrad Stab 157:143–152
Azizi H, Morshedian J, Barikani M, Wagner MH (2011) Correlation between molecular structure parameters and network properties of silane-grafted and moisture cross-linked polyethylenes. Adv Polym Technol 30(4):286–300
Zhang C, Wang W, Huang Y, Pan Y, Jiang L, Dan Y, Luo Y, Peng Z (2013) Thermal, mechanical and rheological properties of polylactide toughened by expoxidized natural rubber. Mater Des 45:198–205
Arruda LC, Magaton M, Bretas RES, Ueki MM (2015) Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polym Test 43:27–37
Li Y, Mi J, Fu H, Zhou H, Wang X (2019) Nanocellular foaming behaviors of chain-extended poly(lactic acid) induced by isothermal crystallization. ACS Omega 4(7):12512–12523
Zhang H, Liu Y, Wang R, Yu X, Qu X, Zhang Q (2011) Functionalization of nanodiamond with epoxy monomer. Chin Chem Lett 22(4):485–488
Aydin EB, Aydin M, Sezginturk MK (2019) Ultrasensitive determination of cadherin-like protein 22 with a label-free electrochemical immunosensor using brush type poly(thiophene-g-glycidylmethacrylate) modified disposable ITO electrode. Talanta 200:387–397
Chen B, Zeng S, Zeng H, Guo Z, Zhang Y, Zheng B (2017) Properties of lotus seed starch-glycerin monostearin complexes formed by high pressure homogenization. Food Chem 226:119–127
Wang X, Liu W, Zhou H, Liu B, Li H, Du Z, Zhang C (2013) Study on the effect of dispersion phase morphology on porous structure of poly(lactic acid)/poly(ethylene terephthalate glycol-modified) blending foams. Polymer 54(21):5839–5851
Wang X, Liu W, Li H, Du Z, Zhang C (2016) Role of maleic- anhydride-grafted- polypropylene in supercritical CO2 foaming of poly(lactic acid) and its effect on cellular morphology. J Cell Plast 52(1):37–56
Carolina ML, Belgacem N, Bretas RES, Bras J (2016) Melt extruded nanocomposites of polybutylene adipate-co-terephthalate (PBAT) with phenylbutyl isocyanate modified cellulose nanocrystals. J Appl Polym Sci 133(34):43678
Chen P, Wang W, Wang Y, Yu K, Zhou H, Wang X, Mi J (2017) Crystallization-induced microcellular foaming of poly(lactic acid) with high volume expansion ratio. Polym Degrad Stab 144:231–240
Song J, Zhou H, Wang X, Zhang Y, Mi J (2019) Role of chain extension in the rheological properties, crystallization behaviors, and microcellular foaming performances of poly(butylene adipate-co-terephthalate). J Appl Polym Sci 136(14):47322
Kuang T, Ju J, Yang Z, Geng L, Peng X (2018) A facile approach towards fabrication of lightweight biodegradable poly(butylene succinate)/carbon fiber composite foams with high electrical conductivity and strength. Compos Sci Technol 159:171–179
Yin D, Mi J, Zhou H, Wang X, Tian H (2020) Fabrication of branching poly(butylene succinate)/cellulose nanocrystal foams with exceptional thermal insulation. Carbohydr Polym 247:116708
Gazzotti S, Farina H, Lesma G, Rampazzo R, Piergiovanni L, Ortenzi MA, Silvani A (2017) Polylactide/cellulose nanocrystals: the in situ polymerization approach to improved nanocomposites. Eur Polym J 94:173–184
Luo J, Sun W, Zhou H, Zhang Y, Wen B, Xin C (2021) Bioderived and biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites based on carbon nanotubes: microstructure observation and EMI shielding property improvement. ACS Sustain Chem Eng 9(32):10785–10798
Zhou H, Wang X, Du Z, Li H, Yu K (2015) Preparation and characterization of chain extended poly(butylene succinate) foams. Polym Eng Sci 55(5):988–994
Nofar M, Tabatabaei A, Sojoudiasli H, Park CB, Carreau PJ, Heuzey MC, Kamal MR (2017) Mechanical and bead foaming behavior of PLA-PBAT and PLA-PBSA blends with different morphologies. Eur Polym J 90:231–244
Khorasani MM, Ghaffarian SR, Babaie A, Mohammadi N (2010) Foaming behavior and cellular structure of microcellular HDPE nanocomposites prepared by a high temperature process. J Cell Plast 46(2):173–190
Dun D, Luo J, Wang M, Wang X, Zhou H, Wang X, Wen B, Zhang Y (2021) Electromagnetic interference shielding foams based on poly(vinylidene fluoride)/carbon nanotubes composite. Macromol Mater Eng 306(12):2100468
Li Y, Yin D, Liu W, Zhou H, Zhang Y, Wang X (2020) Fabrication of biodegradable poly(lactic acid)/carbon nanotube nanocomposite foams: significant improvement on rheological property and foamability. Int J Biol Macromol 163:1175–1186
Zhao Y, Zheng J, Guo P, Wang C, Guo M, Xin C, He Y (2023) Study on chain extension blending modification and foaming behavior of thermoplastic elastomer. ACS Omega 8:9832–9842
Olivato JB, Marini J, Yamashita F, Pollet E, Grossmann MVE, Averous L (2018) Sepiolite as a promising nanoclay for nano-biocomposites based on starch and biodegradable polyester. Mater Sci Eng C Mater Biol Appl 70:296–302
Li Y, Zhang Z, Wang W, Gong P, Yang Q, Park CB, Li G (2022) Ultra-fast degradable PBAT/PBS foams of high performance in compression and thermal insulation made from environment-friendly supercritical foaming. J Supercrit Fluids 181:105512
Zhao H, Cui Z, Sun X, Turng LS, Peng X (2013) Morphology and properties of injection molded solid and microcellular polylactic acid/polyhydroxybutyrate-valerate (PLA/PHBV) blends. Ind Eng Chem Res 52(7):2569–2581
Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4(9):835–864
Liu W, Chen P, Wang X, Wang F, Wu Y (2017) Effects of poly(butyleneadipate-co-terephthalate) as a macromolecular nucleating agent on the crystallization and foaming behavior of biodegradable poly(lactic acid). Cell Polym 36(2):75–96
Kuang T, Chang L, Chen F, Sheng Y, Fu D, Peng X (2016) Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 105:305–313
Zhu M, Wei X, Zhang M, Zhou H, Wang X, Hu J (2023) Adsorption characteristics of amphiphilic open-cell poly(butylene succinate) foams with ultrahigh porosity. J Supercrit Fluids 200:106002
Naguib HE, Park CB, Song SW (2005) Effect of supercritical gas on crystallization of linear and branched polypropylene resins with foaming additives. Ind Eng Chem Res 44(17):6685–6691
Dieckmann D, Holtz B (2000) Aging modifiers for extruded LDPE foam. J Vinyl Addit Technol 6(1):34–38
Cui Y, Wang D, Zhao J, Li D, Ng S, Rui Y (2018) Effect of calcium stearate based foam stabilizer on pore characteristics and thermal conductivity of geopolymer foam material. J Build Eng 20:21–29
Dasari A, Rohrmann J, Misra RDK (2003) Microstructural aspects of surface deformation processes and fracture of tensile strained high isotactic polypropylene. Mater Sci Eng A-Struct 358(1–2):372–383
Rizvi A, Chu RKM, Lee JH, Park CB (2014) Superhydrophobic and oleophilic open-cell foams from fibrillar blends of polypropylene and polytetrafluoroethylene. ACS Appl Mater Interfaces 6(23):21131–21140
Cao Y, Pang Y, Dong X, Wang D, Zheng W (2021) To clarify the resilience of PEBA/MWCNT foams via revealing the effect of the nanoparticle and the cellular structure. ACS Appl Polym Mater 3(8):3766–3775
Huang G, Li S, Li Y, Wu X, Feng X, Gui Y, Deng J, Wang C, Pan K (2021) Preparation and characterization of microcellular foamed thermoplastic polyamide elastomer composite consisting of EVA/TPAE1012. J Appl Polym Sci 138(37):e50952
Lee ST (2004) In: Thermoplastic foam processing: principles and development. CRC Press, Boca Raton
Xu Z, Wang G, Zhao J, Zhang A, Zhao G (2022) Super-elastic and structure-tunable poly(ether-block-amide) foams achieved by microcellular foaming. J CO2 Util 55:101807
Lee ST, Park CB (2014) In: Foam extrusion: principles and practice. CRC Press, New York
Acknowledgements
The National Key Research and Development Program of China (Project No. 2022YFC2104600). R&D Program of Beijing Municipal Education Commission (23JB0024).
Author information
Authors and Affiliations
Contributions
LW: Investigation & writing-review. XW: Investigation. HZ: Project administration, supervision & editing. XW: Investigation & supervision. JH: Project administration, supervision & editing.
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wang, L., Wei, X., Zhou, H. et al. An Ultra-High Volume Expansion Ratio and No-Shrinkage Poly(Butylene Adipate-co-Terephthalate) Foam: Compression and Resilience Properties. J Polym Environ 32, 3230–3245 (2024). https://doi.org/10.1007/s10924-023-03152-x
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10924-023-03152-x