Skip to main content
Log in

An Ultra-High Volume Expansion Ratio and No-Shrinkage Poly(Butylene Adipate-co-Terephthalate) Foam: Compression and Resilience Properties

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Poly(butylene adipate-co-terephthalate) (PBAT) foam is regarded as one of the ideal alternatives to petroleum-based polymer foams in view of its advantages of lightweight, high elasticity, biodegradability and biocompatibility, while the problem of shrinkage after foaming has seriously limited its application in industry. In this paper, the no-shrinkage chain-extend PBAT-glycerin monostearate (GMS) foams with ultra-high volume expansion ratio (VER) were prepared by scCO2-assisted molten foaming method. The chain extension reaction between PBAT and chain extender (CE) were investigated by torque curves, gel fraction and FTIR measurements. Comparing with torqued PBAT, the storage modulus of CE-PBAT2 specimen increased 3 orders of magnitude and their crystallization temperature rose from 72.5 to 87.2 ℃. Furthermore, the addition of GMS was beneficial to enhance the dimensional stability of CE-PBAT foams. When 2 phr CE and 2.5 phr GMS were incorporated into PBAT, CEPBAT-GMS2.5 foam attained ultra-high VER of 25.38 times, resilience ratio of 87% with no-shrinkage, which revealed admirable compression and resilience properties. In conclusion, this study provided a feasible new method for improving the VER and dimensional stability of PBAT foams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Mohanty AK, Vivekanandhan S, Pin JM, Misra M (2018) Composites from renewable and sustainable resources: challenges and innovations. Science 362(6414):536–542

    Article  CAS  PubMed  Google Scholar 

  2. Barboza LGA, Lopes C, Oliveira P, Bessa F, Otero V, Henriques B, Raimundo J, Caetano M, Vale C, Guilhermino L (2020) Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. Sci Total Environ 717:134625

    Article  CAS  PubMed  Google Scholar 

  3. Delacuvellerie A, Benali S, Cyriaque V, Moins S, Raquez JM, Gobert S, Wattiez R (2021) Microbial biofilm composition and polymer degradation of compostable and non-compostable plastics immersed in the marine environment. J Hazard Mater 419:126526

    Article  CAS  PubMed  Google Scholar 

  4. Elvers D, Song CH, Steinbuchel A, Leker J (2016) Technology trends in biodegradable polymers: evidence from patent analysis. Polym Rev 56(4):584–606

    Article  CAS  Google Scholar 

  5. Alvarez I, Gutierrez C, Rodriguez JF, de Lucas A, Garcia MT (2020) Production of drug-releasing biodegradable microporous scaffold impregnated with gemcitabine using a CO2 foaming process. J CO2 Util 41:101227

    Article  CAS  Google Scholar 

  6. Hong SH, Hwang SH (2022) Construction and characterization of biodegradable foam from high-content lignin-reinforced poly(butylene adipate-coterephthalate) biocomposites. ACS Appl Polym Mater 4(3):1775–1783

    Article  CAS  Google Scholar 

  7. De Hoe GX, Zumstein MT, Getzinger GJ, Ruegsegger I, Kohler HE, Maurer-Jones MA, Sander M, Hillmyer MA, McNeill K (2019) Photochemical transformation of poly(butyleneadipate-co-terephthalate) and its effects on enzymatic hydrolyzability. Environ Sci Technol 53(5):2472–2481

    Article  PubMed  Google Scholar 

  8. Dou Q, Cai J (2016) Investigation on polylactide (PLA)/poly(butylene adipate-co-terephthalate) (PBAT)/bark flour of plane tree (PF) eco-composites. Materials 9(5):393

    Article  PubMed  PubMed Central  Google Scholar 

  9. Haider TP, Volker C, Kramm J, Landfester K, Wurm FR (2019) Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew Chem Int Ed 58(1):50–62

    Article  CAS  Google Scholar 

  10. Tian H, Wang Z, Jia S, Pan H, Han L, Bian J, Li Y, Yang H, Zhang H (2022) Biodegradable foaming material of poly(butylene adipate-co-terephthalate) (PBAT)/poly(propylene carbonate) (PPC). Chin J Polym Sci 40(2):208–219

    Article  CAS  Google Scholar 

  11. Long H, Xu H, Shaoyu J, Jiang T, Zhuang W, Li M, Jin J, Ji L, Ying H, Zhu C (2023) High-strength bio-degradable polymer foams with stable high volume-expansion ratio using chain extension and green supercritical mixed-gas foaming. Polymers 15(4):895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wei X, Cui W, Zheng K, Wang J, Hu J, Zhou H (2022) Bimodal cellular structure evolution in PBAT foams incorporated by carbon nanotubes and graphene nanosheets. J Polym Environ 30(7):2785–2799

    Article  CAS  Google Scholar 

  13. Gao X, Chen Y, Chen P, Xu Z, Zhao L, Hu D (2022) Supercritical CO2 foaming and shrinkage resistance of thermoplastic polyurethane/modified magnesium borate whisker composite. J CO2 Util 57:101887

    Article  CAS  Google Scholar 

  14. Zhang H, Liu T, Li B, Li H, Cao Z, Jin G, Zhao L, Xin Z (2020) Anti-shrinking foaming of polyethylene with CO2 as blowing agent. J Supercrit Fluids 163:104883

    Article  CAS  Google Scholar 

  15. Wang Z, Zhao J, Wang G, Xu Z, Zhang A, Dong G, Zhao G (2022) Lightweight, low-shrinkage and high elastic poly(butylene adipate-co-terephthalate) foams achieved by microcellular foaming using N2 & CO2 as co-blowing agents. J CO2 Util 64:102149

    Article  CAS  Google Scholar 

  16. Hu D, Xue K, Liu Z, Xu Z, Zhao L (2022) The essential role of PBS on PBAT foaming under supercritical CO2 toward green engineering. J CO2 Util 60:101965

    Article  CAS  Google Scholar 

  17. Cui Y, Luo J, Deng Y, Wang X, Zhou H (2021) Effect of acetylated cellulose nanocrystals on solid-state foaming behaviors of chain-extended poly(butylene adipate-co-terephthalate). J Vinyl Addit Technol 27(4):722–735

    Article  CAS  Google Scholar 

  18. Song J, Mi J, Zhou H, Wang X, Zhang Y (2018) Chain extension of poly(butylene adipate-co-terephthalate) and its microcellular foaming behaviors. Polym Degrad Stab 157:143–152

    Article  CAS  Google Scholar 

  19. Azizi H, Morshedian J, Barikani M, Wagner MH (2011) Correlation between molecular structure parameters and network properties of silane-grafted and moisture cross-linked polyethylenes. Adv Polym Technol 30(4):286–300

    Article  CAS  Google Scholar 

  20. Zhang C, Wang W, Huang Y, Pan Y, Jiang L, Dan Y, Luo Y, Peng Z (2013) Thermal, mechanical and rheological properties of polylactide toughened by expoxidized natural rubber. Mater Des 45:198–205

    Article  CAS  Google Scholar 

  21. Arruda LC, Magaton M, Bretas RES, Ueki MM (2015) Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polym Test 43:27–37

    Article  CAS  Google Scholar 

  22. Li Y, Mi J, Fu H, Zhou H, Wang X (2019) Nanocellular foaming behaviors of chain-extended poly(lactic acid) induced by isothermal crystallization. ACS Omega 4(7):12512–12523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang H, Liu Y, Wang R, Yu X, Qu X, Zhang Q (2011) Functionalization of nanodiamond with epoxy monomer. Chin Chem Lett 22(4):485–488

    Article  CAS  Google Scholar 

  24. Aydin EB, Aydin M, Sezginturk MK (2019) Ultrasensitive determination of cadherin-like protein 22 with a label-free electrochemical immunosensor using brush type poly(thiophene-g-glycidylmethacrylate) modified disposable ITO electrode. Talanta 200:387–397

    Article  CAS  PubMed  Google Scholar 

  25. Chen B, Zeng S, Zeng H, Guo Z, Zhang Y, Zheng B (2017) Properties of lotus seed starch-glycerin monostearin complexes formed by high pressure homogenization. Food Chem 226:119–127

    Article  CAS  PubMed  Google Scholar 

  26. Wang X, Liu W, Zhou H, Liu B, Li H, Du Z, Zhang C (2013) Study on the effect of dispersion phase morphology on porous structure of poly(lactic acid)/poly(ethylene terephthalate glycol-modified) blending foams. Polymer 54(21):5839–5851

    Article  CAS  Google Scholar 

  27. Wang X, Liu W, Li H, Du Z, Zhang C (2016) Role of maleic- anhydride-grafted- polypropylene in supercritical CO2 foaming of poly(lactic acid) and its effect on cellular morphology. J Cell Plast 52(1):37–56

    Article  Google Scholar 

  28. Carolina ML, Belgacem N, Bretas RES, Bras J (2016) Melt extruded nanocomposites of polybutylene adipate-co-terephthalate (PBAT) with phenylbutyl isocyanate modified cellulose nanocrystals. J Appl Polym Sci 133(34):43678

    Article  Google Scholar 

  29. Chen P, Wang W, Wang Y, Yu K, Zhou H, Wang X, Mi J (2017) Crystallization-induced microcellular foaming of poly(lactic acid) with high volume expansion ratio. Polym Degrad Stab 144:231–240

    Article  CAS  Google Scholar 

  30. Song J, Zhou H, Wang X, Zhang Y, Mi J (2019) Role of chain extension in the rheological properties, crystallization behaviors, and microcellular foaming performances of poly(butylene adipate-co-terephthalate). J Appl Polym Sci 136(14):47322

    Article  Google Scholar 

  31. Kuang T, Ju J, Yang Z, Geng L, Peng X (2018) A facile approach towards fabrication of lightweight biodegradable poly(butylene succinate)/carbon fiber composite foams with high electrical conductivity and strength. Compos Sci Technol 159:171–179

    Article  CAS  Google Scholar 

  32. Yin D, Mi J, Zhou H, Wang X, Tian H (2020) Fabrication of branching poly(butylene succinate)/cellulose nanocrystal foams with exceptional thermal insulation. Carbohydr Polym 247:116708

    Article  CAS  PubMed  Google Scholar 

  33. Gazzotti S, Farina H, Lesma G, Rampazzo R, Piergiovanni L, Ortenzi MA, Silvani A (2017) Polylactide/cellulose nanocrystals: the in situ polymerization approach to improved nanocomposites. Eur Polym J 94:173–184

    Article  CAS  Google Scholar 

  34. Luo J, Sun W, Zhou H, Zhang Y, Wen B, Xin C (2021) Bioderived and biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites based on carbon nanotubes: microstructure observation and EMI shielding property improvement. ACS Sustain Chem Eng 9(32):10785–10798

    Article  CAS  Google Scholar 

  35. Zhou H, Wang X, Du Z, Li H, Yu K (2015) Preparation and characterization of chain extended poly(butylene succinate) foams. Polym Eng Sci 55(5):988–994

    Article  CAS  Google Scholar 

  36. Nofar M, Tabatabaei A, Sojoudiasli H, Park CB, Carreau PJ, Heuzey MC, Kamal MR (2017) Mechanical and bead foaming behavior of PLA-PBAT and PLA-PBSA blends with different morphologies. Eur Polym J 90:231–244

    Article  CAS  Google Scholar 

  37. Khorasani MM, Ghaffarian SR, Babaie A, Mohammadi N (2010) Foaming behavior and cellular structure of microcellular HDPE nanocomposites prepared by a high temperature process. J Cell Plast 46(2):173–190

    Article  CAS  Google Scholar 

  38. Dun D, Luo J, Wang M, Wang X, Zhou H, Wang X, Wen B, Zhang Y (2021) Electromagnetic interference shielding foams based on poly(vinylidene fluoride)/carbon nanotubes composite. Macromol Mater Eng 306(12):2100468

    Article  CAS  Google Scholar 

  39. Li Y, Yin D, Liu W, Zhou H, Zhang Y, Wang X (2020) Fabrication of biodegradable poly(lactic acid)/carbon nanotube nanocomposite foams: significant improvement on rheological property and foamability. Int J Biol Macromol 163:1175–1186

    Article  CAS  PubMed  Google Scholar 

  40. Zhao Y, Zheng J, Guo P, Wang C, Guo M, Xin C, He Y (2023) Study on chain extension blending modification and foaming behavior of thermoplastic elastomer. ACS Omega 8:9832–9842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Olivato JB, Marini J, Yamashita F, Pollet E, Grossmann MVE, Averous L (2018) Sepiolite as a promising nanoclay for nano-biocomposites based on starch and biodegradable polyester. Mater Sci Eng C Mater Biol Appl 70:296–302

    Article  Google Scholar 

  42. Li Y, Zhang Z, Wang W, Gong P, Yang Q, Park CB, Li G (2022) Ultra-fast degradable PBAT/PBS foams of high performance in compression and thermal insulation made from environment-friendly supercritical foaming. J Supercrit Fluids 181:105512

    Article  CAS  Google Scholar 

  43. Zhao H, Cui Z, Sun X, Turng LS, Peng X (2013) Morphology and properties of injection molded solid and microcellular polylactic acid/polyhydroxybutyrate-valerate (PLA/PHBV) blends. Ind Eng Chem Res 52(7):2569–2581

    Article  CAS  Google Scholar 

  44. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4(9):835–864

    Article  CAS  PubMed  Google Scholar 

  45. Liu W, Chen P, Wang X, Wang F, Wu Y (2017) Effects of poly(butyleneadipate-co-terephthalate) as a macromolecular nucleating agent on the crystallization and foaming behavior of biodegradable poly(lactic acid). Cell Polym 36(2):75–96

    Article  CAS  Google Scholar 

  46. Kuang T, Chang L, Chen F, Sheng Y, Fu D, Peng X (2016) Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 105:305–313

    Article  CAS  Google Scholar 

  47. Zhu M, Wei X, Zhang M, Zhou H, Wang X, Hu J (2023) Adsorption characteristics of amphiphilic open-cell poly(butylene succinate) foams with ultrahigh porosity. J Supercrit Fluids 200:106002

    Article  CAS  Google Scholar 

  48. Naguib HE, Park CB, Song SW (2005) Effect of supercritical gas on crystallization of linear and branched polypropylene resins with foaming additives. Ind Eng Chem Res 44(17):6685–6691

    Article  CAS  Google Scholar 

  49. Dieckmann D, Holtz B (2000) Aging modifiers for extruded LDPE foam. J Vinyl Addit Technol 6(1):34–38

    Article  CAS  Google Scholar 

  50. Cui Y, Wang D, Zhao J, Li D, Ng S, Rui Y (2018) Effect of calcium stearate based foam stabilizer on pore characteristics and thermal conductivity of geopolymer foam material. J Build Eng 20:21–29

    Article  Google Scholar 

  51. Dasari A, Rohrmann J, Misra RDK (2003) Microstructural aspects of surface deformation processes and fracture of tensile strained high isotactic polypropylene. Mater Sci Eng A-Struct 358(1–2):372–383

    Article  Google Scholar 

  52. Rizvi A, Chu RKM, Lee JH, Park CB (2014) Superhydrophobic and oleophilic open-cell foams from fibrillar blends of polypropylene and polytetrafluoroethylene. ACS Appl Mater Interfaces 6(23):21131–21140

    Article  CAS  PubMed  Google Scholar 

  53. Cao Y, Pang Y, Dong X, Wang D, Zheng W (2021) To clarify the resilience of PEBA/MWCNT foams via revealing the effect of the nanoparticle and the cellular structure. ACS Appl Polym Mater 3(8):3766–3775

    Article  CAS  Google Scholar 

  54. Huang G, Li S, Li Y, Wu X, Feng X, Gui Y, Deng J, Wang C, Pan K (2021) Preparation and characterization of microcellular foamed thermoplastic polyamide elastomer composite consisting of EVA/TPAE1012. J Appl Polym Sci 138(37):e50952

    Article  Google Scholar 

  55. Lee ST (2004) In: Thermoplastic foam processing: principles and development. CRC Press, Boca Raton

    Google Scholar 

  56. Xu Z, Wang G, Zhao J, Zhang A, Zhao G (2022) Super-elastic and structure-tunable poly(ether-block-amide) foams achieved by microcellular foaming. J CO2 Util 55:101807

    Article  CAS  Google Scholar 

  57. Lee ST, Park CB (2014) In: Foam extrusion: principles and practice. CRC Press, New York

    Book  Google Scholar 

Download references

Acknowledgements

The National Key Research and Development Program of China (Project No. 2022YFC2104600). R&D Program of Beijing Municipal Education Commission (23JB0024).

Author information

Authors and Affiliations

Authors

Contributions

LW: Investigation & writing-review. XW: Investigation. HZ: Project administration, supervision & editing. XW: Investigation & supervision. JH: Project administration, supervision & editing.

Corresponding authors

Correspondence to Hongfu Zhou or Jing Hu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wei, X., Zhou, H. et al. An Ultra-High Volume Expansion Ratio and No-Shrinkage Poly(Butylene Adipate-co-Terephthalate) Foam: Compression and Resilience Properties. J Polym Environ 32, 3230–3245 (2024). https://doi.org/10.1007/s10924-023-03152-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-03152-x

Keywords

Navigation