Skip to main content
Log in

Cellulose-Based Upcycling of Brewer´s Spent Grains: Extraction and Acetylation

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

As the main byproduct of beer production, huge amounts of brewer´s spent grain (BSG) are generated annually worldwide. BSG is being currently underutilized since they are mostly devoted to animal feeding. Nevertheless, BSG offers a wide range of upcycling possibilities due to its lignocellulosic nature. In this work, we have addressed the extraction of cellulose and its further conversion into cellulose acetate, a biodegradable polymer with potential industrial application, especially as food contact material. The effectiveness of both processes, cellulose extraction and acetate synthesis were monitored by performing a comprehensive physicochemical characterization of the products. The influence of reaction time (1–5 h) on acetylation extent and acetate properties was also assessed. The results reflected that the process effectively removed hemicelluloses and lignin from BSG, and yielded a cellulose pulp with 63% crystallinity and 351 °C maximum degradation temperature. However, around 28% of the cellulose was solubilized, with acid pretreatment as the most aggressive step (above 19% disappearance). Acetylation extent was practically not affected by reaction time, and cellulose acetate with degree of substitution approximately 2.60 was obtained already after 1 h. Infrared spectra and X-ray diffractograms were similar for all acetate samples. Nevertheless, the thermogravimetric analysis evidenced that at least 3 h were needed to obtain a product with high thermal stability. This work addressed for the first time the acetylation of cellulose isolated from BSG, and may serve as basis for the manufacturing of a biobased plastic with application in sectors such as food packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. BarthHaas R (2022) /2023 https://www.barthhaas.com/resources/barthhaas-report

  2. Mussatto SI, Roberto IC (2006) Chemical characterization and liberation of pentose sugars from brewer´s spent grain. J Chem Technol Biotechnol 81(3):268–274. https://doi.org/10.1002/jctb.1374

    Article  CAS  Google Scholar 

  3. Dos Santos DM, De Lacerda Bukzem A, Ascheri DPR, Signini R, De Aquino GLB (2015) Microwave-assisted carboxymethylation of cellulose extracted from brewer´s spent grain. Carbohydr Polym 131:125–133. https://doi.org/10.1016/j.carbpol.2015.05.051

    Article  CAS  PubMed  Google Scholar 

  4. Ravindran R, Jaiswal S, Abu-Ghannam N, Jaiswal AK (2018) A comparative analysis of pretreatment strategies on the properties and hydrolysis of brewers’ spent grain. Bioresour Technol 248:272–279. https://doi.org/10.1016/j.biortech.2017.06.039

    Article  CAS  PubMed  Google Scholar 

  5. Steiner J, Procopio S, Becker T (2015) Brewer´s spent grain: source of value-added polysaccharides for the food industry in reference to the health claims. Eur Food Res Technol 241(3):303–315. https://doi.org/10.1007/s00217-015-2461-7

    Article  CAS  Google Scholar 

  6. Lynch KM, Steffen EJ, Arendt EK (2016) Brewers’ spent grain: a review with an emphasis on food and health. J Inst Brew 122:553–568. https://doi.org/10.1002/jib.363

    Article  CAS  Google Scholar 

  7. Bachmann SAL, Calvete T, Féris LA (2022) Potential applications of brewery spent grain: critical an overview. J Environ Chem Eng 10(1):106951. https://doi.org/10.1016/j.jece.2021.106951

    Article  CAS  Google Scholar 

  8. Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26(9):1605–1688. https://doi.org/10.1016/S0079-6700(01)00027-2

    Article  CAS  Google Scholar 

  9. Kramar A, Luxbacher T, González-Benito J (2023) Solution blow co-spinning of cellulose acetate with poly(ethylene oxide). Structure, morphology, and properties of nanofibers. Carbohydr Polym 320:121225. https://doi.org/10.1016/j.carbpol.2023.121225

    Article  CAS  PubMed  Google Scholar 

  10. Fischer S, Thümmler K, Volkert B, Hettrich K, Schmidt I, Fischer K (2008) Properties and applications of cellulose acetate. Macromol Symp 262(1):89–96. https://doi.org/10.1002/masy.200850210

    Article  CAS  Google Scholar 

  11. Teixeira SC, Silva RRA, de Oliveira TV, Stringheta PC, Pinto MRMR, Soares NFF (2021) Glycerol and triethyl citrate plasticizer effects on molecular, thermal, mechanical, and barrier properties of cellulose acetate films. Food Biosci 42:101202. https://doi.org/10.1016/j.fbio.2021.101202

    Article  CAS  Google Scholar 

  12. Cao Y, Wu J, Meng T, Zhang J, He J, Li H, Zhang Y (2007) Acetone-soluble cellulose acetates prepared by one-step homogeneous acetylation of cornhusk cellulose in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Carbohydr Polym 69(4):665–672. https://doi.org/10.1016/j.carbpol.2007.02.001

    Article  CAS  Google Scholar 

  13. Biswas A, Shogren RL, Willett JL (2005) Solvent-free process to esterify polysaccharides. Biomacromolecules 6(4):1843–1845. https://doi.org/10.1021/bm0501757

    Article  CAS  PubMed  Google Scholar 

  14. Ding J, Li C, Liu J, Lu Y, Qin G, Gan L, Long M (2017) Time and energy-efficient homogeneous transesterification of cellulose under mild reaction conditions. Carbohydr Polym 157:1785–1793. https://doi.org/10.1016/j.carbpol.2016.11.063

    Article  CAS  PubMed  Google Scholar 

  15. Cheng HN, Dowd MK, Selling GW, Biswas A (2010) Synthesis of cellulose acetate from cotton byproducts. Carbohydr Polym 80(2):449–452. https://doi.org/10.1016/j.carbpol.2009.11.048

    Article  CAS  Google Scholar 

  16. Sharma A, Giri SK, Kartha KPR, Sangwan RS (2017) Value-additive utilization of agro-biomass: preparation of cellulose triacetate directly from rice straw as well as other cellulosic materials. RSC Adv 7(21):12745–12752. https://doi.org/10.1039/c7ra00078b

    Article  CAS  Google Scholar 

  17. Nu DTT, Hung NP, Van Hoang C, Van der Bruggen B (2019) Preparation of an asymmetric membrane from sugarcane bagasse using DMSO as green solvent. Appl Sci 9(16):3347. https://doi.org/10.3390/app9163347

    Article  CAS  Google Scholar 

  18. Candido RG, Gonçalves AR (2016) Synthesis of cellulose acetate and carboxymethylcellulose from sugarcane straw. Carbohydr Polym 152:679–686. https://doi.org/10.1016/j.carbpol.2016.07.071

    Article  CAS  PubMed  Google Scholar 

  19. Candido RG, Godoy GG, Gonçalves A (2017) Characterization and application of cellulose acetate synthesized from sugarcane bagasse. Carbohydr Polym 167:280–289. https://doi.org/10.1016/j.carbpol.2017.03.057

    Article  CAS  PubMed  Google Scholar 

  20. Araújo D, Castro MCR, Figueiredo A, Vilarinho M, Machado A (2020) Green synthesis of cellulose acetate from corncob: physicochemical properties and assessment of environmental impacts. J Clean Prod 260:120865. https://doi.org/10.1016/j.jclepro.2020.120865

    Article  CAS  Google Scholar 

  21. Morales-Juárez AA, Terrazas Armendáriz LD, Alcocer-González JM, Chávez-Guerrero L (2023) Potential of nanocellulose as a dietary fiber isolated from brewer´s spent grain. Polymers 15(17):3613. https://doi.org/10.3390/polym15173613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Oztuna Taner O, Ekici L, Akyuz L (2023) CMC-based edible coating composite films from Brewer´s spent grain waste: a novel approach for the fresh strawberry package. Polym Bull 80(8):9033–9058. https://doi.org/10.1007/s00289-022-04490-x

    Article  CAS  Google Scholar 

  23. Mussatto SI, Rocha GJM, Roberto IC (2008) Hydrogen peroxide bleaching of cellulose pulps obtained from brewer´s spent grain. Cellulose 15(4):641–649. https://doi.org/10.1007/s10570-008-9198-4

    Article  CAS  Google Scholar 

  24. Mandalari G, Faulds CB, Sancho AI, Saija A, Bisignano G, Locurto R, Waldron DW (2005) Fractionation and characterisation of arabinoxylans from brewers´ spent grain and wheat bran. J Cereal Sci 42(2):205–212. https://doi.org/10.1016/j.jcs.2005.03.001

    Article  CAS  Google Scholar 

  25. de Crane d´Heysselaer S, Bockstal L, Jacquet N, Schmetz Q, Richel A (2022) Potential for the valorisation of brewer´s spent grains: a case study for the sequential extraction of saccharides and lignin. Waste Manag Res 40(7):1007–1014. https://doi.org/10.1177/0734242X211055547

    Article  PubMed  Google Scholar 

  26. Mussatto SI, Fernandes M, Roberto IC (2007) Lignin recovery from brewer´s spent grain black liquor. Carbohydr Polym 70(2):218–223. https://doi.org/10.1016/j.carbpol.2007.03.021

    Article  CAS  Google Scholar 

  27. Sustainable Development Goals. Department of Economic and Social Affairs, United Nations. https://sdgs.un.org/goals

  28. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. National renewable energy laboratory. Laboratory Analytical Procedure (LAP). Scientific Research Publishing, Wuhan

    Google Scholar 

  29. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Text Res J 29(10):786–794. https://doi.org/10.1177/004051755902901003

    Article  CAS  Google Scholar 

  30. Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod 37(1):93–99. https://doi.org/10.1016/j.indcrop.2011.12.016

    Article  CAS  Google Scholar 

  31. Zhou L, He H, Jiang C, Ma L, Yu P (2017) Cellulose nanocrystals from cotton stalk for reinforcement of poly(vinyl alcohol) composites. Cellul Chem Technol 51(1–2):109–119

    CAS  Google Scholar 

  32. Kassab Z, Abdellaoui Y, Hamid Salim M, Bouhfid R, El Kacem Qaiss A, El Achaby M (2020) Micro- and nano-celluloses derived from hemp stalks and their effect as polymer reinforcing materials. Carbohydr Polym 245:116506. https://doi.org/10.1016/j.carbpol.2020.116506

    Article  CAS  PubMed  Google Scholar 

  33. Amaral HR, Cipriano DF, Santos MS, Schettino MA, Ferreti JVT, Meirelles CS, Pereira VS, Cunha AG, Emmerich FG, Freitas JCC (2019) Production of high-purity cellulose, cellulose acetate and cellulose-silica composite from babassu coconut shells. Carbohydr Polym 210:127–134. https://doi.org/10.1016/j.carbpol.2019.01.061

    Article  CAS  PubMed  Google Scholar 

  34. Adebajo MO, Frost RL (2004) Acetylation of raw cotton for oil spill cleanup application: an FTIR and 13C MAS NMR spectroscopic investigation. Spectrochim Acta A Mol Biomol Spectrosc 60(10):2315–2321. https://doi.org/10.1016/j.saa.2003.12.005

    Article  CAS  PubMed  Google Scholar 

  35. Nemr AE, Ragab S, Sikaily AE (2017) Rapid synthesis of cellulose triacetate from cotton cellulose and its effect on specific surface area and particle size distribution. Iran Polym J (English Edition) 26(4):261–272. https://doi.org/10.1007/s13726-017-0516-2

    Article  CAS  Google Scholar 

  36. Fei P, Liao L, Cheng B, Song J (2017) Quantitative analysis of cellulose acetate with a high degree of substitution by FTIR and its application. Anal Methods 9(43):6194–6201. https://doi.org/10.1039/C7AY02165H

    Article  CAS  Google Scholar 

  37. Li W, Cai G, Zhang P (2019) A simple and rapid Fourier transform infrared method for the determination of the degree of acetyl substitution of cellulose nanocrystals. J Mater Sci 54(10):8047–8056. https://doi.org/10.1007/s10853-019-03471-2

    Article  CAS  Google Scholar 

  38. Kanauchi O, Mitsuyama K, Araki Y (2001) Development of a functional germinated barley foodstuff from brewer’s spent grain for the treatment of ulcerative Colitis. J Am Soc Brew Chem 59(2):59–62

    CAS  Google Scholar 

  39. Carvalheiro F, Esteves MP, Parajó JC, Pereira H, Gírio FM (2004) Production of oligosaccharides by autohydrolysis of brewery’s spent grain. Bioresour Technol 91(1):93–100. https://doi.org/10.1016/S0960-8524(03)00148-2

    Article  CAS  PubMed  Google Scholar 

  40. Silva JP, Sousa S, Rodrigues J, Antunes H, Porter JJ, Gonçalves I, Ferreira-Dias S (2004) Adsorption of acid orange 7 dye in aqueous solutions by spent brewery grains. Sep Purif Technol 40(3):309–315. https://doi.org/10.1016/j.seppur.2004.03.010

    Article  CAS  Google Scholar 

  41. Xiros C, Topakas E, Katapodis P, Christakopoulos P (2008) Hydrolysis and fermentation of brewer’s spent grain by Neurospora Crassa. Bioresour Technol 99(13):5427–5435. https://doi.org/10.1016/j.biortech.2007.11.010

    Article  CAS  PubMed  Google Scholar 

  42. Jay AJ, Parker ML, Faulks R, Husband F, Wilde P, Smith AC, Faulds CB, Waldron KW (2008) A systematic micro-dissection of brewers’ spent grain. J Cereal Sci 47(2):357–364. https://doi.org/10.1016/j.jcs.2007.05.006

    Article  CAS  Google Scholar 

  43. Robertson JA, I’Anson KJA, Treimo J, Faulds CB, Brocklehurst TF, Eijsink VGH, Waldron KW (2010) Profiling brewers’ spent grain for composition and microbial ecology at the site of production. LWT -Food Sci Technol 43(6):890–896. https://doi.org/10.1016/j.lwt.2010.01.019

    Article  CAS  Google Scholar 

  44. Waters DM, Jacob F, Titze J, Arendt EK, Zannini E (2012) Fibre, protein and mineral fortification of wheat bread through milled and fermented brewer’s spent grain enrichment. Eur Food Res Technol 235(5):767–778. https://doi.org/10.1007/s00217-012-1805-9

    Article  CAS  Google Scholar 

  45. Meneses NGT, Martins S, Teixeira JA, Mussatto SI (2013) Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains. Sep Purif Technol 108:152–158. https://doi.org/10.1016/j.seppur.2013.02.015

    Article  CAS  Google Scholar 

  46. Parchami M, Agnihotri S, Taherzadeh MJ (2022) Aqueous ethanol organosolv process for the valorization of Brewer´s spent grain (BSG). Bioresour Technol 362:127764. https://doi.org/10.1016/j.biortech.2022.127764

    Article  CAS  PubMed  Google Scholar 

  47. Klímek P, Wimmer R, Mishra PK, Kúdela J (2017) Utilizing brewer´s-spent-grain in wood-based particleboard manufacturing. J Clean Prod 141:812–817. https://doi.org/10.1016/j.jclepro.2016.09.152

    Article  CAS  Google Scholar 

  48. Andrade Alves JA, Lisboa dos Santos MD, Morais CC, Ramirez Ascheri JL, Signini R, dos Santos DM, Cavalcante Bastos SM, Ramirez Ascheri DP (2019) Sorghum straw: Pulping and bleaching process optimization and synthesis of cellulose acetate. Int J Biol Macromol 135:877–886. https://doi.org/10.1016/j.ijbiomac.2019.05.014

    Article  CAS  PubMed  Google Scholar 

  49. Sun XF, Jing Z, Fowler P, Wu Y, Rajaratnam M (2011) Structural characterization and isolation of lignin and hemicelluloses from barley straw. Ind Crops Prod 33(3):588–598. https://doi.org/10.1016/j.indcrop.2010.12.005

    Article  CAS  Google Scholar 

  50. Elyamine AM, Moussa MG, Afzal J, Rana MS, Imran M, Zhao X, Hu CX (2019) Modified rice straw enhanced cadmium (II) immobilization in soil and promoted the degradation of phenanthrene in co-contaminated soil. Int J Mol Sci 20:2189. https://doi.org/10.3390/ijms20092189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896. https://doi.org/10.1007/s10570-013-0030-4

    Article  CAS  Google Scholar 

  52. Barud HS, de Araújo Júnior AM, Santos DB, de Assunçāo RMN, Meireles CS, Cerqueira DA, Rodrigues Filho G, Ribeiro CA, Messaddeq Y, Ribeiro SJL (2008) Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose. Thermochim Acta 471(1–2):61–69. https://doi.org/10.1016/j.tca.2008.02.009

    Article  CAS  Google Scholar 

  53. French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the segal crystallinity index. Cellulose 20(1):583–588. https://doi.org/10.1007/s10570-012-9833-y

    Article  CAS  Google Scholar 

  54. Matebie BY, Tizazu BZ, Kadhem AA, Venkatesa Prabhu S (2021) Synthesis of cellulose nanocrystals (CNCs) from brewer´s spent grain using acid hydrolysis: characterization and optimization. J Nanomater 2021:7133154. https://doi.org/10.1155/2021/7133154

    Article  CAS  Google Scholar 

  55. Melikoğlu AY, Bilek SE, Cesur S (2019) Optimum alkaline treatment parameters for the extraction of cellulose and production of cellulose nanocrystals from apple pomace. Carbohydr Polym 215:330–337. https://doi.org/10.1016/j.carbpol.2019.03.103

    Article  CAS  PubMed  Google Scholar 

  56. Akinjokun AI, Petrik LF, Ogunfowokan AO, Ajao J, Ojumu TV (2021) Isolation and characterization of nanocrystalline cellulose from cocoa pod husk (CPH) biomass wastes. Heliyon 7(4):e06680. https://doi.org/10.1016/j.heliyon.2021.e06680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013

    Article  CAS  Google Scholar 

  58. Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15(1):149–159. https://doi.org/10.1007/s10570-007-9145-9

    Article  CAS  Google Scholar 

  59. Das AM, Ali AA, Hazarika MP (2014) Synthesis and characterization of cellulose acetate from rice husk: eco-friendly condition. Carbohydr Polym 112:342–349. https://doi.org/10.1016/j.carbpol.2014.06.006

    Article  CAS  PubMed  Google Scholar 

  60. Umaningrum D, Astuti MD, Nurmasari R, Hasanuddin H, Mulyasuryani A, Mardiana D (2021) Variation of iodine mass and acetylation time on cellulose acetate synthesis from rice straw. Indo J Chem Res 8(3):228–233. https://doi.org/10.30598//ijcr.2021.7-dew

    Article  Google Scholar 

  61. Fan G, Wang M, Liao C, Fang T, Li J, Zhou R (2013) Isolation of cellulose from rice straw and its conversion into cellulose acetate catalyzed by phosphotungstic acid. Carbohydr Polym 94(1):71–76. https://doi.org/10.1016/j.carbpol.2013.01.073

    Article  CAS  PubMed  Google Scholar 

  62. Rodrigues Filho G, Monteiro DS, Meireles CS, de Assunçāo RM, Cerqueira DA, Barud HS, Ribeiro SJL, Messadeq Y (2008) Synthesis and characterization of cellulose acetate produced from recycled newspaper. Carbohydr Polym 73(1):74–82. https://doi.org/10.1016/j.carbpol.2007.11.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Provincial Council of Jaén (Spain) for funding this research (Grant number 2022/4090). L. Camacho-Núñez also acknowledges the cooperation between the University of Jaén and Andaltec I + D + i for the economic support received during the experimental phase of the study. We also thank the technical and human support provided by Centro de Instrumentación Científico-Técnica (CICT; University of Jaén) and Andaltec I + D + i laboratory staff, as well as M. José de la Mata (Autonomous University of Madrid) for performing the simultaneous TGA-DSC measurements.

Funding

This research was funded by the Provincial Council of Jaén (Spain) under Grant number 2022/4090.

Author information

Authors and Affiliations

Authors

Contributions

LCN: Methodology, Investigation, Writing‒Original Draft. SJC: Conceptualization, Methodology, Investigation, Writing‒Review and Editing. MDLR: Conceptualization, Resources, Writing‒Review and Editing, Supervision. FJNM: Conceptualization, Resources, Writing‒Review and Editing, Funding acquisition. JARL: Conceptualization, Resources, Writing‒Review and Editing, Supervision, Project administration, Funding acquisition.

Corresponding author

Correspondence to José Antonio Rodríguez-Liébana.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camacho-Núñez, L., Jurado-Contreras, S., La Rubia, M.D. et al. Cellulose-Based Upcycling of Brewer´s Spent Grains: Extraction and Acetylation. J Polym Environ (2023). https://doi.org/10.1007/s10924-023-03137-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-023-03137-w

Keywords

Navigation