Skip to main content
Log in

Optimization of Bioplastic Film from Kapok Cellulose Production at Different Acetylation

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Plastic film is widely produced and applied in many daily applications. Although it provides many benefits to human activity, the disposal of commercial plastics has always been a serious problem as it will contribute to landfilling issues and environmental pollution. Bioplastic film was invented to resolve part of this issue, as most of the plastic film produced from natural sources is biodegradable. However, the biodegradability and characteristics of the film are highly dependent on the type of raw material, production procedure, and chemical composition. In this study, extracted kapok cellulose was acetylated into cellulose acetate (CA) with various levels of acetic acid (17.5, 20, and 22.5 mL), acetic anhydride (5, 7.5, and 10 mL) and acetylation time (30, 45 and 60 min). The Box–Behnken design was applied to evaluate the quality of the produced film. The design showed that the level of acetic acid has a strong impact on CA’s yield, acetic anhydride has a greater influence on tensile strength, and CA’s solubility has a stronger connection with the acetylation time. All modeling equations developed were validated with the coefficient of determination, R2 more than 0.6. The optimized factor levels for the ductile-like film on acetic acid, acetic anhydride, and acetylation time are 20.530 mL, 9.546 mL, and 55.45 min, respectively. Whereas for brittle-like film, the optimized factor level is 22.399 mL, 10 mL, and 60 min, respectively. The ductility and brittleness of a plastic film can be modified by adjusting these level factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Boonniteewanich J, Pitivut S, Tongjoy S, Lapnonkawow S, Suttiruengwong S (2014) Evaluation of carbon footprint of bioplastic straw compared to petroleum based straw products. Energy Procedia 56:518–524. https://doi.org/10.1016/j.egypro.2014.07.187

    Article  CAS  Google Scholar 

  2. Mekonnen T, Mussone P, Khalil H, Bressler D (2013) Progress in bio-based plastics and plasticizing modifications. J Mater Chem A 1(43):13379–13398

    Article  CAS  Google Scholar 

  3. Alshehrei F (2017) Biodegradation of synthetic and natural plastic by microorganisms. J Appl Environ Microbiol 5(1):8–19

    CAS  Google Scholar 

  4. Atiwesh G, Mikhael A, Parrish CC, Banoub J, Le TAT (2021) Environmental impact of bioplastic use: a review. Heliyon 7(9):07918. https://doi.org/10.1016/j.heliyon.2021.e07918

    Article  CAS  Google Scholar 

  5. Al-Khairy D, Fu W, Alzahmi AS, Twizere JC, Amin SA, Salehi-Ashtiani K, Mystikou A (2022) Closing the gap between bio-based and petroleum-based plastic through bioengineering. Microorganisms 10(12):2320. https://doi.org/10.3390/microorganisms10122320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Coppola G, Gaudio MT, Lopresto CG, Calabro V, Curcio S, Chakraborty S (2021) Bioplastic from renewable biomass: a facile solution for a greener environment. Earth Syst Environ 5:231–251. https://doi.org/10.1007/s41748-021-00208-7

    Article  Google Scholar 

  7. Shah TV, Vasava DV (2019) A glimpse of biodegradable polymers and their biomedical applications. e-Polymers 19(1):385–410. https://doi.org/10.1515/epoly-2019-0041

    Article  CAS  Google Scholar 

  8. Abotbina W, Sapuan SM, Sultan MTH, Alkbir MFM, Ilyas RA (2021) Development and characterization of cornstarch-based bioplastics packaging film using a combination of different plasticizers. Polymers 13(20):3487. https://doi.org/10.3390/polym13203487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Sultan NFK, Johari WLW (2017) The development of banana peel/corn starch bioplastic film: a preliminary study. Bioremediat Sci Technol Res 5(1):12–17. https://doi.org/10.54987/bstr.v5i1.352

    Article  Google Scholar 

  10. Vijayalaksmi M, Govindaraj V, Anisha M, Vigneshwari N, Gokul M, Nithila EE, Bebin M, Prasath TA, Chezhiyan P (2022) Synthesis and characterization of banana peel starch-based bioplastic for intravenous tubes preparation. Mater Today Commun 33:104464. https://doi.org/10.1016/j.mtcomm.2022.104464

    Article  CAS  Google Scholar 

  11. Cifriadi A, Panji T, Wibowo NA, Syamsu K (2017) Bioplastic production from cellulose of oil palm empty fruit bunch. IOP Conf Ser 65(1):012011. https://doi.org/10.1088/1755-1315/65/1/012011/meta

    Article  Google Scholar 

  12. Yang J, Ching YC, Chuah CH, Liou NS (2020) Preparation and characterization of starch/empty fruit bunch-based bioplastic composites reinforced with epoxidized oils. Polymers 13(1):94. https://doi.org/10.3390/polym13010094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Rajendran N, Puppala S, Sneha Raj M, Ruth Angeeleena B, Rajam C (2012) Seaweeds can be a new source for bioplastics. J Pharm Res 5(3):1476–1479

    Google Scholar 

  14. Pacheco D, Cotas J, Marques JC, Pereira L, Gonçalves AM (2022) Seaweed-based polymers from sustainable aquaculture to “greener” plastic products. In: Sustainable global resources of seaweeds bioresources, cultivation, trade and multifarious applications, vol 1, pp 591–602. https://doi.org/10.1007/978-3-030-91955-9_31

  15. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10(9):3722–3742. https://doi.org/10.3390/ijms10093722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Poon JJ, Tan MC, Kiew PL (2020) Ultrasound-assisted extraction in delignification process to obtain high purity cellulose. Cellulose Chem Technol 54(78):725–734. https://doi.org/10.35812/CelluloseChemTechnol.2020.54.72

    Article  CAS  Google Scholar 

  17. Shah M, Rajhans S, Pandya HA, Mankad AU (2021) Bioplastic for future: a review then and now. World J Adv Res Rev 9(2):56–67. https://doi.org/10.30574/wjarr.2021.9.2.0054

    Article  CAS  Google Scholar 

  18. Arfin T (2020) Cellulose and hydrogel matrices for environmental applications. In: Sustainable nanocellulose and nanohydrogels from natural sources. Elsevier, Amsterdam, pp 255–274. https://doi.org/10.1016/B978-0-12-816789-2.00012-2

  19. Arruebo M, Sebastian V (2020) Batch and microfluidic reactors in the synthesis of enteric drug carriers. In: Nanotechnology for oral drug delivery. Academic Press, New York, pp 317–357. https://doi.org/10.1016/B978-0-12-818038-9.00008-9

  20. Lalan MS, Patel VN, Misra A (2021) Polymers in vaginal drug delivery: recent advancements. In: Applications of polymers in drug delivery. Elsevier, Amsterdam, pp 281–303. https://doi.org/10.1016/B978-0-12-819659-5.00010-0

  21. Shah S, Matkawala F, Garg S, Nighojkar S, Nighojkar A, Kumar A (2020) Emerging trend of bio-plastics and its impact on society. Biotechnol J Int 24(4):1–10. https://doi.org/10.9734/bji/2020/v24i430107

    Article  CAS  Google Scholar 

  22. Riaz QUA, Masud T (2013) Recent trends and applications of encapsulating materials for probiotic stability. Crit Rev Food Sci Nutr 53(3):231–244. https://doi.org/10.1080/10408398.2010.524953

    Article  PubMed  Google Scholar 

  23. Arjun N, Narendar D, Sunitha K, Harika K, Nagaraj B (2016) Development, evaluation, and influence of formulation and process variables on in vitro performance of oral elementary osmotic device of atenolol. Int J Pharm Investig 6(4):238. https://doi.org/10.4103/2230-973x.195951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ahmad A, Waheed S, Khan SM, Shafiq M, Farooq M, Sanaullah K, Jamil T (2015) Effect of silica on the properties of cellulose acetate/polyethylene glycol membranes for reverse osmosis. Desalination 355:1–10. https://doi.org/10.1016/j.desal.2014.10.004

    Article  CAS  Google Scholar 

  25. Majid RA, Mohamad Z, Rusman R, Zulkornain AA, Halim NA, Abdullah M, Low JH (2018) Development of tea waste/kapok fiber composite paper. Chem Eng Trans 63:457–462

    Google Scholar 

  26. Zhang H, Zhang G, Zhu H, Wang F, Xu G, Shen H, Wang J (2021) Multiscale kapok/cellulose aerogels for oil absorption: the study on structure and oil absorption properties. Ind Crops Prod 171:113902. https://doi.org/10.1016/j.indcrop.2021.113902

    Article  CAS  Google Scholar 

  27. Putri RW, Rendana M, Waluyo U, Andrianto T (2022) Effect of plasticizer and concentration on characteristics of bioplastic based on cellulose acetate from Kapok (Ceiba pentandra) fiber. Sci Technol Indonesia 7(1):73–83. https://doi.org/10.26554/sti.2022.7.1.73-83

    Article  Google Scholar 

  28. Zheng Y, Wang J, Zhu Y, Wang A (2015) Research and application of kapok fiber as an absorbing material: a mini review. J Environ Sci 27:21–32. https://doi.org/10.1016/j.jes.2014.09.026

    Article  CAS  Google Scholar 

  29. Naharudin AU, Shaarani SHN, Rou LM, Hamidi NH, Ahmad N, Rasid R (2019) Kapok as an adsorbent for industrial wastewater. J Chem Eng Ind Biotechnol 5(2):48–54. https://doi.org/10.15282/jceib.v5i2.3727

    Article  Google Scholar 

  30. Yunos N, Müller J, Chen SK, Tan KB, Hepp M, Butz B, Schulte A, Wesner D, Schönherr H, Talib ZA, Salim NSM (2022) Superoleophilic-hydrophobic Kapok oil sorbents via energy efficient carbonization. J Nat Fibers 19(15):12398–12414. https://doi.org/10.1080/15440478.2022.2060403

    Article  CAS  Google Scholar 

  31. Tye YY, Lee KT, Abdullah WNW, Leh CP (2012) Potential of Ceiba pentandra (L.) Gaertn. (kapok fiber) as a resource for second generation bioethanol: effect of various simple pretreatment methods on sugar production. Bioresour Technol 116:536–539. https://doi.org/10.1016/j.biortech.2012.04.025

    Article  PubMed  CAS  Google Scholar 

  32. Syed Draman SF, Daik R, Abdul Latif F, El-Sheikh SM (2014) Characterization and thermal decomposition kinetics of Kapok (Ceiba pentandra L.)—based cellulose. BioResources 9(1):8–23. https://doi.org/10.15376/biores.9.1.8-23

    Article  CAS  Google Scholar 

  33. Rahmah AU, Abdullah MA (2011) Evaluation of Malaysian Ceiba pentandra (L.) Gaertn. for oily water filtration using factorial design. Desalination 266(1–3):51–55. https://doi.org/10.1016/j.desal.2010.08.001

    Article  CAS  Google Scholar 

  34. Frone AN, Panaitescu DM, Donescu D (2011) Some aspects concerning the isolation of cellulose micro-and nano-fibers. UPB Bull Stiintific Ser B 73(2):133–152

    CAS  Google Scholar 

  35. Maryana R, Anwar M, Suwanto A, Hasanah SU, Fitriana E (2020) Comparison study of various cellulose acetylation methods from its IR spectra and morphological pattern of cellulose acetate as a biomass valori. Nat Environ Pollut Technol 19(2):669–675. https://doi.org/10.46488/NEPT.2020.v19i02.021

    Article  CAS  Google Scholar 

  36. Tristantini D, Sandra C (2018) Synthesis of cellulose acetate from palm oil bunches and dried jackfruit leaves. In: E3S Web of Conferences, vol 67, p 04035. https://doi.org/10.1051/e3sconf/20186704035

  37. Egot MP, Alguno AC (2018) Preparation and characterization of cellulose acetate from pineapple (Ananas comosus) leaves. Key Eng Mater 772:8–12. https://doi.org/10.4028/www.scientific.net/KEM.772.8

    Article  Google Scholar 

  38. Homem NC, Amorim MTP (2020) Synthesis of cellulose acetate using as raw material textile wastes. Mater Today 31:315–317. https://doi.org/10.1016/j.matpr.2020.01.494

    Article  CAS  Google Scholar 

  39. Fischer S, Thümmler K, Volkert B, Hettrich K, Schmidt I, Fischer K (2008) Properties and applications of cellulose acetate. In: Macromolecular symposia, vol 262, no 1, pp 89–96. https://doi.org/10.1002/masy.200850210

  40. Perez S, Samain D (2010) Structure and engineering of celluloses. Adv Carbohydr Chem Biochem 64:25–116. https://doi.org/10.1016/S0065-2318(10)64003-6

    Article  PubMed  CAS  Google Scholar 

  41. Vieira MGA, Da Silva MA, Dos Santos LO, Beppu MM (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47(3):254–263. https://doi.org/10.1016/j.eurpolymj.2010.12.011

    Article  CAS  Google Scholar 

  42. Das R, Dash C, Behera P, Bisoyi DK (2022) Influence of dewaxing on mechanical properties of kapok fiber-reinforced polymer composite. IOP Conf Ser 1086(1):012054. https://doi.org/10.1088/1755-1315/1086/1/012054

    Article  Google Scholar 

  43. Singh R, Bhateria R (2020) Optimization and experimental design of the Pb2+ adsorption process on a nano-Fe3O4-based adsorbent using the response surface methodology. ACS Omega 5(43):28305–28318. https://doi.org/10.1021/acsomega.0c04284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Yap KY, Tan MC (2021) Oil adsorption onto different types of microplastic in synthetic seawater. Environ Technol Innov 24:101994. https://doi.org/10.1016/j.eti.2021.101994

    Article  CAS  Google Scholar 

  45. Ayyubi SN, Purbasari A (2022) The effect of composition on mechanical properties of biodegradable plastic based on chitosan/cassava starch/PVA/crude glycerol: optimization of the composition using box behnken design. Mater Today 63:78–83. https://doi.org/10.1016/j.matpr.2022.01.294

    Article  CAS  Google Scholar 

  46. Hassan MZ, Roslan SA, Sapuan SM, Rasid ZA, Mohd Nor AF, Md Daud MY, Dolah R, Mohamed Yusoff MZ (2020) Mercerization optimization of bamboo (Bambusa vulgaris) fiber-reinforced epoxy composite structures using a box–behnken design. Polymers 12(6):1367. https://doi.org/10.3390/polym12061367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Ratnawati R (2022) Response surface methodology for formulating PVA/starch/lignin biodegradable plastic. Emerg Sci J 6(2):238–255. https://doi.org/10.28991/ESJ-2022-06-02-03

    Article  Google Scholar 

  48. Geow CH, Tan MC, Yeap SP, Chin NL (2018) A Box-Behnken design for optimization of ultrasound-assisted solvent extraction of hazelnut oil. J Food Process Preserv 42(9):13743. https://doi.org/10.1111/jfpp.13743

    Article  CAS  Google Scholar 

  49. Fakhri A (2014) Application of response surface methodology to optimize the process variables for fluoride ion removal using maghemite nanoparticles. J Saudi Chem Soc 18(4):340–347. https://doi.org/10.1016/j.jscs.2013.10.010

    Article  CAS  Google Scholar 

  50. Ten Chan Y, Tan MC, Chin NL (2019) Application of Box-Behnken design in optimization of ultrasound effect on apple pectin as sugar replacer. Lwt 115:108449. https://doi.org/10.1016/j.lwt.2019.108449

    Article  CAS  Google Scholar 

  51. Tan MC, Chin NL, Yusof YA (2012) A Box-Behnken design for determining the optimum experimental condition of cake batter mixing. Food Bioprocess Technol 5:972–982. https://doi.org/10.1007/s11947-010-0394-5

    Article  Google Scholar 

  52. Pal T, Pramanik S, Verma KD, Naqvi SZ, Manna PK, Kar KK (2022) Fly ash-reinforced polypropylene composites. Handb Fly Ash 9:243–270. https://doi.org/10.1016/B978-0-12-817686-3.00021-9

    Article  Google Scholar 

  53. Hedenqvist MS (2018) Barrier packaging materials. Chapter 26. In: Environmental degradation of materialsm, pp 559–581. https://doi.org/10.1016/B978-0-323-52472-8.00027-7

  54. Lukey CA (2001) Thermoset coatings. In: Encyclopedia of Materials: Science and Technology, pp 9209–9215. https://doi.org/10.1016/B0-08-043152-6/01659-4

  55. Li Y, Ren S (2011) Building decorative materials. Elsevier, Amsterdam. https://doi.org/10.1533/9780857092588.228

    Book  Google Scholar 

  56. Rosato D, Rosato D (2003) 4-product design. Plastics engineered product design. Elsevier, Amsterdam, pp 198–343. https://doi.org/10.1016/B978-185617416-9/50005-3

    Book  Google Scholar 

  57. Petroudy SD (2017) Physical and mechanical properties of natural fibers. In: Advanced high strength natural fibre composites in construction, pp 59–83. https://doi.org/10.1016/B978-0-08-100411-1.00003-0

  58. Ma YZ, Sobernheim D, Garzon JR (2016) Glossary for unconventional oil and gas resource evaluation and development. In: Unconventional oil and gas resources handbook, pp 513–526. https://doi.org/10.1016/B978-0-12-802238-2.00019-5

Download references

Acknowledgements

The authors would like to express their gratitude for the financial support from UCSI University Research Excellent & Innovation Grant (REIG-FETBE-2021/049).

Funding

The authors would like to express their gratitude for the financial support from UCSI University Research Excellent & Innovation Grant (REIG-FETBE-2021/049).

Author information

Authors and Affiliations

Authors

Contributions

MCT: Conceptualization, Methodology, Supervision, Writing-Review & Editing. CYC: Conceptualization, Methodology, Supervision. JJP: Software, Validation, Formal Analysis, Investigation, Resources, Writing- Original Draft.

Corresponding author

Correspondence to Choon Yoong Cheok.

Ethics declarations

Competing interests

The authors declared that there is no conflict of interest with any other party on the publication of the current work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poon, J.J., Cheok, C.Y. & Tan, M.C. Optimization of Bioplastic Film from Kapok Cellulose Production at Different Acetylation. J Polym Environ (2023). https://doi.org/10.1007/s10924-023-03134-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-023-03134-z

Keywords

Navigation