Skip to main content
Log in

Value Addition to Agro-Industrial Waste Through Pectin Extraction: Chemometric Categorization, Density Functional Theory Analysis, Rheology Investigation, Optimization Using Response Surface Methodology and Prospective Applications Through Hydrogel Preparation

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The preservation of a healthy, green environment by valorizing the substantial amount of waste generated by the fruit industries is the primary responsibility of the current scientific community. This article addresses the challenges of strategic waste management through cleaner production with the development of the circular economy. Here, the extraction of pectin has been reported from industrial apple pomace using organic acid to enhance pectin yield (26.09%) with better galacturonic acid content (51.03%) under optimal conditions (2 N concentration of citric acid, 90 °C temperature, 110 min reaction time and 450 rpm agitation speed). The central composite design model of response surface methodology was employed for the optimization of the process. The extracted pectin elucidated low methoxyl content (4.43%) and low degree of esterification (34.80%), making itself a favorable choice for food industries. The rheological analysis established its pseudoplastic flow behavior. The Principal Component Analysis was applied to the FTIR spectra to categorize the extracted pectin based on the degree of methyl esterification. Density Functional Theory analyses of polymeric pectin compounds were carried out to determine the effect of the degree of polymerization and methylation on pectin gelation. Nuclear Magnetic Resonance analysis confirmed its chemical structural similarity with that of the commercial low methoxyl pectin. Extracted pectin/nanocellulose-based hydrogel was successfully developed using this improvised low methoxyl pectin, for the potential versatile application in biomedical and other pharmaceutical fields. This will be a ground-breaking concept for the circular economy via generating profit from such horticultural wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. FAOSTAT (2021) Crops. http://www.fao.org/faostat/en/#data/QC/visualize. Accessed February 2022

  2. Lyu F, Luiz SF, Azeredo DRP et al (2020) Apple pomace as a functional and healthy ingredient in food products: a review. Processes 8:1–15. https://doi.org/10.3390/pr8030319

    Article  CAS  Google Scholar 

  3. Luo J, Ma Y, Xu Y (2020) Valorization of apple pomace using a two-step slightly acidic processing strategy. Renew Energy 152:793–798. https://doi.org/10.1016/j.renene.2020.01.120

    Article  CAS  Google Scholar 

  4. Zhang J, Zhao L, Gao B et al (2018) Protopectinase production by Paenibacillus polymyxa Z6 and its application in pectin extraction from apple pomace. J Food Process Preserv 42:1–8. https://doi.org/10.1111/jfpp.13367

    Article  CAS  Google Scholar 

  5. Schmidt US, Schütz L, Schuchmann HP (2017) Interfacial and emulsifying properties of citrus pectin: interaction of pH, ionic strength and degree of esterification. Food Hydrocoll 62:288–298. https://doi.org/10.1016/j.foodhyd.2016.08.0166

    Article  CAS  Google Scholar 

  6. Tyagi V, Sharma K, Malviya R (2015) Pectins and their role in food and pharmaceutical industry: a review. J Chronother Drug Deliv 6:65–77

    CAS  Google Scholar 

  7. Perussello CA, Zhang Z, Marzocchella A, Tiwari BK (2017) Valorization of apple pomace by extraction of valuable compounds. Compr Rev Food Sci Food Saf 16:776–796. https://doi.org/10.1111/1541-4337.12290

    Article  CAS  PubMed  Google Scholar 

  8. Liew SQ, Chin NL, Yusof YA (2014) Extraction and characterization of pectin from passion fruit peels. Agric Agric Sci Procedia 2:231–236. https://doi.org/10.1016/j.aaspro.2014.11.033

    Article  Google Scholar 

  9. Wikiera A, Mika M, Starzyńska-Janiszewska A, Stodolak B (2015) Application of celluclast 1.5L in apple pectin extraction. Carbohydr Polym 134:251–257. https://doi.org/10.1016/j.carbpol.2015.07.051

    Article  CAS  PubMed  Google Scholar 

  10. Sucheta MNN, Yadav SK (2020) Extraction of pectin from black carrot pomace using intermittent microwave, ultrasound and conventional heating: kinetics, characterization and process economics. Food Hydrocoll 102:105592. https://doi.org/10.1016/j.foodhyd.2019.105592

    Article  CAS  Google Scholar 

  11. Zheng J, Li H, Wang D et al (2021) Radio frequency assisted extraction of pectin from apple pomace: process optimization and comparison with microwave and conventional methods. Food Hydrocoll 121:107031. https://doi.org/10.1016/j.foodhyd.2021.107031

    Article  CAS  Google Scholar 

  12. Luo J, Xu Y, Fan Y (2019) Upgrading pectin production from apple pomace by acetic acid extraction. Appl Biochem Biotechnol 187:1300–1311. https://doi.org/10.1007/s12010-018-2893-1

    Article  CAS  PubMed  Google Scholar 

  13. Ramli N (2011) Effect of ammonium oxalate and acetic acid at several extraction time and pH on some physicochemical properties of pectin from cocoa husks (Theobroma cacao). African J Food Sci 5:790–798. https://doi.org/10.5897/ajfs11.107

    Article  CAS  Google Scholar 

  14. Cho EH, Jung HT, Lee BH et al (2019) Green process development for apple-peel pectin production by organic acid extraction. Carbohydr Polym 204:97–103. https://doi.org/10.1016/j.carbpol.2018.09.086

    Article  CAS  PubMed  Google Scholar 

  15. Ma S, Yu SJ, Zheng XL et al (2013) Extraction, characterization and spontaneous emulsifying properties of pectin from sugar beet pulp. Carbohydr Polym 98:750–753. https://doi.org/10.1016/j.carbpol.2013.06.042

    Article  CAS  PubMed  Google Scholar 

  16. Seixas FL, Fukuda DL, Turbiani FRB et al (2014) Extraction of pectin from passion fruit peel (Passiflora edulis f.flavicarpa) by microwave-induced heating. Food Hydrocoll 38:186–192. https://doi.org/10.1016/j.foodhyd.2013.12.001

    Article  CAS  Google Scholar 

  17. Chandel V, Biswas D, Roy S et al (2022) (2022) Current advancements in pectin: extraction, properties and multifunctional applications. Foods 11:2683. https://doi.org/10.3390/foods11172683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou J, Liu D, Xia W et al (2023) Physicochemical and functional properties of RG-I enriched pectin extracted from thinned-young apples. Int J Biol Macromol 236:123953. https://doi.org/10.1016/j.ijbiomac.2023.123953

    Article  CAS  PubMed  Google Scholar 

  19. Naqash F, Masoodi FA, Gani A et al (2021) Pectin recovery from apple pomace: physico-chemical and functional variation based on methyl-esterification. Int J Food Sci Technol 56:4669–4679. https://doi.org/10.1111/ijfs.15129

    Article  CAS  Google Scholar 

  20. Pérez J, Gómez K, Vega L (2022) Optimization and preliminary physicochemical characterization of pectin extraction from watermelon rind (Citrullus lanatus) with citric acid. Hindawi Int J Food Sci. https://doi.org/10.1155/2022/3068829

    Article  Google Scholar 

  21. Oliveira TÍS, Rosa MF, Cavalcante FL et al (2016) Optimization of pectin extraction from banana peels with citric acid by using response surface methodology. Food Chem 198:113–118. https://doi.org/10.1016/j.foodchem.2015.08.080

    Article  CAS  PubMed  Google Scholar 

  22. Yapo BM (2009) Pectin quantity, composition and physicochemical behaviour as influenced by the purification process. Food Res Int 42:1197–1202. https://doi.org/10.1016/j.foodres.2009.06.002

    Article  CAS  Google Scholar 

  23. Abitbol T, Mijlkovic A, Malafronte L et al (2021) Cellulose nanocrystal/low methoxyl pectin gels produced by internal ionotropic gelation. Carbohydr Polym 260:117345. https://doi.org/10.1016/j.carbpol.2020.117345

    Article  CAS  PubMed  Google Scholar 

  24. Lungu A, Cernencu AI, Dinescu S et al (2021) Nanocellulose-enriched hydrocolloid-based hydrogels designed using a Ca2+ free strategy based on citric acid. Mater Des 197:109200. https://doi.org/10.1016/j.matdes.2020.109200

    Article  CAS  Google Scholar 

  25. O-chongpian P, Takuathung MN, Chittasupho C, Ruksiriwanich W (2021) Composite nanocellulose fibers-based hydrogels loading clindamycin HCl with Ca2+ and citric acid as crosslinking agents for pharmaceutical applications. Polymers 13(24):4423. https://doi.org/10.3390/polym13244423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cinkmanis I, Muizniece-Brasava S, Viluma I et al (2020) Extraction of pectin from apple pomace. Eng Rural Dev 19:1934–1939. https://doi.org/10.22616/ERDev.2020.19.TF549

    Article  Google Scholar 

  27. Mahmoud MH, Abu-salem FM, Azab DEH (2022) Research Article A Comparative Study of Pectin Green Extraction Methods from Apple Waste : characterization and functional properties. Hindawi International Journal of Food Science Volume 2022, Article ID 2865921, 9 pages https://doi.org/10.1155/2022/2865921

  28. AOAC (2000) Official Methods of Analysis, 17th edn. American Organization of Analytical Chemists. Gaitherburg, USA

    Google Scholar 

  29. Güzel M, Akpınar Ö (2019) Valorisation of fruit by-products: production characterization of pectins from fruit peels. Food Bioprod Process 115:126–133. https://doi.org/10.1016/j.fbp.2019.03.009

    Article  CAS  Google Scholar 

  30. Ghoshal G, Negi P (2020) Isolation of pectin from kinnow peels and its characterization. Food Bioprod Process 124(2):342–353. https://doi.org/10.1016/j.fbp.2020.09.008

    Article  CAS  Google Scholar 

  31. Méndez DA, Fabra MJ, Odriozola-Serrano I et al (2022) Influence of the extraction conditions on the carbohydrate and phenolic composition of functional pectin from persimmon waste streams. Food Hydrocoll. https://doi.org/10.1016/j.foodhyd.2021.107066

    Article  Google Scholar 

  32. Kumar M, Potkule J, Tomar M et al (2021) Jackfruit seed slimy sheath, a novel source of pectin : Studies on antioxidant activity, functional group, and structural morphology. Carbohydr Polym Technol Appl 2:100054. https://doi.org/10.1016/j.carpta.2021.100054

    Article  CAS  Google Scholar 

  33. Wathoni N, Yuan Shan C, Yi Shan W et al (2019) Characterization and antioxidant activity of pectin from Indonesian mangosteen (Garcinia mangostana L.) rind. Heliyon 5:e02299. https://doi.org/10.1016/j.heliyon.2019.e02299

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dranca F, Vargas M, Oroian M (2020) Physicochemical properties of pectin from Malus domestica ‘Fălticeni’ apple pomace as affected by non-conventional extraction techniques. Food Hydrocoll 100:105383. https://doi.org/10.1016/j.foodhyd.2019.10538335

    Article  CAS  Google Scholar 

  35. Becke AD (1988) LDA_Becke. Phys Rev A 38(6):3098–3100

    Article  CAS  Google Scholar 

  36. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.78537

    Article  CAS  Google Scholar 

  37. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G, Nakatsuji H, Caricato M, Li X, Hratchian H, Izmaylov A, Bloino J, Zheng G, Sonnenberg J, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J JA, Peralta J, Ogliaro F, Bearpark M, Heyd J, Brothers E, Kudin K Staroverov V, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J, Iyengar S, Tomasi J, Cossi M, Rega N, Millam J, Klene M, Knox J, Cross J, Bakken V, Adamo C, ramillo J, Gomperts R, Stratmann R, Yazyev O, Austin A, Cammi R, Pomelli C, Ochterski J, Martin R, Morokuma K, Zakrzewski V, Voth G, Salvador P, Dannenberg J, Dapprich S, Daniels A, Farkas O, Foresman J, Ortiz J, Cioslowski J, Fox D (2009) Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford

  38. Toscano M, Russo N (2016) Soybean aglycones antioxidant activity. A theoretical investigation. Comput Theor Chem 1077:119–124. https://doi.org/10.1016/j.comptc.2015.11.00839

    Article  CAS  Google Scholar 

  39. Santos EE, Amaro RC, Bustamante CCC et al (2020) Extraction of pectin from agroindustrial residue with an ecofriendly solvent: use of FTIR and chemometrics to differentiate pectins according to degree of methyl esterification. Food Hydrocoll. https://doi.org/10.1016/j.foodhyd.2020.105921

    Article  Google Scholar 

  40. Tanpichai S, Phoothong F, Boonmahitthisud A (2022) Superabsorbent cellulose-based hydrogels cross-liked with borax. Sci Rep 12:1–12. https://doi.org/10.1038/s41598-022-12688-2

    Article  CAS  Google Scholar 

  41. Yang J, Mu T, Ma M (2019) Optimization of ultrasound-microwave assisted acid extraction of pectin from potato pulp by response surface methodology and its characterization. Food Chem 289:351–359. https://doi.org/10.1016/j.foodchem.2019.03.027

    Article  CAS  PubMed  Google Scholar 

  42. Rungraeng N, Kraithong S (2020) Effect of acid type and concentration on properties of pectin extracted from unripe Cavendish banana peel and its application in raspberry jam. Eng Agric Environ Food 13:1–8. https://doi.org/10.37221/eaef.13.1_1

    Article  Google Scholar 

  43. Castillo-Israel KAT, Baguio SF, Diasanta MDB et al (2015) Extraction and characterization of pectin from Saba banana [Musa’saba’(Musa acuminata x Musa balbisiana)] peel wastes: a preliminary study. Int Food Res J 22:202–207

    CAS  Google Scholar 

  44. Jafari F, Khodaiyan F, Kiani H, Hosseini SS (2017) Pectin from carrot pomace: optimization of extraction and physicochemical properties. Carbohydr Polym 157:1315–1322. https://doi.org/10.1016/j.carbpol.2016.11.013

    Article  CAS  PubMed  Google Scholar 

  45. Pasandide B, Khodaiyan F, Mousavi ZE, Hosseini SS (2017) Optimization of aqueous pectin extraction from Citrus medica peel. Carbohydr Polym 178:27–33. https://doi.org/10.1016/j.carbpol.2017.08.098

    Article  CAS  PubMed  Google Scholar 

  46. Zaid RM, Mishra P, Tabassum S et al (2019) High methoxyl pectin extracts from Hylocereus polyrhizus’s peels: extraction kinetics and thermodynamic studies. Int J Biol Macromol 141:1147–1157. https://doi.org/10.1016/j.ijbiomac.2019.09.017

    Article  CAS  PubMed  Google Scholar 

  47. Azad AKM (2014) Isolation and characterization of pectin extracted from lemon pomace during ripening. J Food Nutr Sci 2:30. https://doi.org/10.11648/j.jfns.20140202.1248

    Article  CAS  Google Scholar 

  48. Ismail NSM, Ramli N, Hani NM, Meon Z (2012) Extraction and characterization of pectin from dragon fruit (Hylocereus polyrhizus) using various extraction conditions. Sains Malaysiana 41:41–4549

    CAS  Google Scholar 

  49. Virk BS, Sogi DS (2004) Extraction and characterization of pectin from apple (Malus pumila Cv. Amri) peel waste. Int J Food Prop 7:693–703. https://doi.org/10.1081/JFP-200033095

    Article  CAS  Google Scholar 

  50. Mashau ME, Lekhuleni ILG, Kgatla TE, Jideani AIO (2021) Physicochemical properties of South African prickly pear fruit and peel: extraction and characterisation of pectin from the peel. Open Agric 6:178–191. https://doi.org/10.1515/opag-2021-0216

    Article  Google Scholar 

  51. Hosseini SS, Khodaiyan F, Yarmand MS (2016) Aqueous extraction of pectin from sour orange peel and its preliminary physicochemical properties. Int J Biol Macromol 82:920–926. https://doi.org/10.1016/j.ijbiomac.2015.11.007

    Article  CAS  PubMed  Google Scholar 

  52. Hosseini SS, Khodaiyan F, Kazemi M, Najari Z (2019) Optimization and characterization of pectin extracted from sour orange peel by ultrasound assisted method. Int J Biol Macromol 125:621–629. https://doi.org/10.1016/j.ijbiomac.2018.12.096

    Article  CAS  PubMed  Google Scholar 

  53. Mamet T, Ge Z-z, Zhang Y, Li C-m (2018) Interactions between highly galloylated persimmon tannins and pectins. Int J Biol Macromol 106:410–417. https://doi.org/10.1016/j.ijbiomac.2017.08.039

    Article  CAS  PubMed  Google Scholar 

  54. Kazemi M, Khodaiyan F, Hosseini SS (2019) Eggplant peel as a high potential source of high methylated pectin: ultrasonic extraction optimization and characterization. LWT 105:182–189. https://doi.org/10.1016/j.lwt.2019.01.060

    Article  CAS  Google Scholar 

  55. Lin Y, An F, He H et al (2021) Structural and rheological characterization of pectin from passion fruit (Passiflora edulis f. flavicarpa) peel extracted by high-speed shearing. Food Hydrocoll 114:106555. https://doi.org/10.1016/j.foodhyd.2020.106555

    Article  CAS  Google Scholar 

  56. Thu Dao TA, Webb HK, Malherbe F (2021) Optimization of pectin extraction from fruit peels by response surface method: Conventional versus microwave-assisted heating. Food Hydrocoll 113:106475. https://doi.org/10.1016/j.foodhyd.2020.106475

    Article  CAS  Google Scholar 

  57. Sengkhamparn N, Sagis LMC, de Vries R et al (2010) Physicochemical properties of pectins from okra (Abelmoschus esculentus (L.) Moench). Food Hydrocoll 24:35–41. https://doi.org/10.1016/j.foodhyd.2009.07.007

    Article  CAS  Google Scholar 

  58. Matharu AS, Houghton JA, Lucas-Torres C, Moreno A (2016) Acid-free microwave-assisted hydrothermal extraction of pectin and porous cellulose from mango peel waste-towards a zero waste mango biorefinery. Green Chem 18:5280–5287. https://doi.org/10.1039/c6gc01178k

    Article  CAS  Google Scholar 

  59. Sharma S, Baral M, Dash D, Kanungo BK (2021) Synthesis, solution studies and DFT investigation of a tripodal ligand with 3-hydroxypyran-4-one scaffold. J Incl Phenom Macrocycl Chem 101:275–289. https://doi.org/10.1007/s10847-021-01088-0

    Article  CAS  Google Scholar 

  60. Baum A, Dominiak M, Vidal-Melgosa S et al (2017) Prediction of pectin yield and quality by FTIR and carbohydrate microarray analysis. Food Bioprocess Technol 10:143–154. https://doi.org/10.1007/s11947-016-1802-2

    Article  CAS  Google Scholar 

  61. Rakitikul W, Tammasat T, Udjai J, Nimmanpipug P (2016) Experimental and DFT study of gelling factor of pectin. Suranaree J Sci Technol 23:421–428. https://doi.org/10.13140/RG.2.2.17397.99047

    Article  Google Scholar 

  62. Rana P, Sharma S, Sharma R, Banerjee K (2019) Apple pectin supported superparamagnetic (γ-Fe2O3) maghemite nanoparticles with antimicrobial potency. Mater Sci Energy Technol 2:15–21. https://doi.org/10.1016/j.mset.2018.09.001

    Article  Google Scholar 

  63. Andersen AK, Larsen B, Grasdalen H (1995) Sequential structure by 1H NMR as a direct assay for pectinesterase activity. Carbohydr Res 273:93–98. https://doi.org/10.1016/0008-6215(95)00100-8

    Article  CAS  Google Scholar 

  64. Longyun LI, Shuang G, Li Y, Xuzhen Q, Wei F (2018) Mechanical and adhesive properties of ploy (ethylene glycerol) diacrylate based hydrogels plasticized with PEG and glycerol. Chem Res Chin Univ. https://doi.org/10.1007/s40242-018-7337-5

    Article  Google Scholar 

  65. Kazak O, Eker YR, Bingol H, et al (2022) Word Count: 4983

  66. Munarin F, Tanzi MC, Petrini P (2012) Advances in biomedical applications of pectin gels. Int J Biol Macromol 51:681–689. https://doi.org/10.1016/j.ijbiomac.2012.07.002

    Article  CAS  PubMed  Google Scholar 

  67. Xu X, Ouyang X, Yang L (2020) Adsorption of Pb (II) from aqueous solutions using crosslinked carboxylated chitosan/carboxylated nanocellulose hydrogel beads. J Mol Liq. https://doi.org/10.1016/j.molliq.2020.114523

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Center of Innovative and Applied Bioprocessing (CIAB), Mohali a National Institute under the Department of Biotechnology, Government of India for research facilities and infrastructure, Panjab University, National Agri-Food Biotechnology Institute (NABI) and Indian Institute of Science Education and Research (IISER), Mohali for providing their instrumentation facilities.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

HR: Methodology, Investigation, Experimental & Formal analysis, Visualization, Writing-original draft, Manuscript editing & revision. JR: Density functional theory analysis, instrumentation and software. DS: Supervision, Manuscript review & editing. SG: Conceptualization, Supervision, Manuscript review, Resources, Funding acquisition.

Corresponding authors

Correspondence to Dipti Sareen or Saswata Goswami.

Ethics declarations

Competing Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 298 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, H., Rana, J., Sareen, D. et al. Value Addition to Agro-Industrial Waste Through Pectin Extraction: Chemometric Categorization, Density Functional Theory Analysis, Rheology Investigation, Optimization Using Response Surface Methodology and Prospective Applications Through Hydrogel Preparation. J Polym Environ (2023). https://doi.org/10.1007/s10924-023-03103-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-023-03103-6

Keywords

Navigation