Skip to main content
Log in

A Review on the Fate of Microplastics: Their Degradation and Advanced Analytical Characterization

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Today, the world is struggling with the colossal amount of microplastics (MPs) due to the tremendous increase in the global production. Presence of MPs in the water samples, biological samples, and its potential to carry lethal chemicals raised the interest on better management of MPs. However, an effective degradation methodology is necessary to decrease the prolonged lifetime of such polymeric materials. So far, very limited reports are available on the degradation methods such as photo-oxidation, biodegradation, photo-thermal oxidative process, subsequent mechanisms involved during the degradation of MPs. Many critical challenges pertaining to those are poorly understood. Particularly, the extraction process, reliable methods to degrade MPs and their analytical techniques, level of MPs contamination in commercially caught fishes and the population at large. Here, we have revisited shortly on current MPs extraction process, various degradation methods using catalyst with their respective mechanisms. Also, the role of most common analytical methods/tools, to identify, analyse the degraded product from MPs, both environment samples and experimental samples, were elaborated. Finally, the solutions to overcome the problems were identified.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Nabi I, Bacha A-U-R, Li K et al (2020) Complete photocatalytic mineralization of microplastic on TiO2 nanoparticle film. iScience 23:101326. https://doi.org/10.1016/j.isci.2020.101326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cole M, Lindeque P, Halsband C, Galloway TS (2011) Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 62:2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025

    Article  CAS  PubMed  Google Scholar 

  3. Tanaka K, Takada H, Ikenaka Y et al (2020) Occurrence and concentrations of chemical additives in plastic fragments on a beach on the island of Kauai, Hawaii. Marine Pollut Bull 150:110732. https://doi.org/10.1016/j.marpolbul.2019.110732

    Article  CAS  Google Scholar 

  4. Hale RC, Seeley ME, La Guardia MJ et al (2020) A global perspective on microplastics. J Geophys Res Oceans 125:e2018JC014719. https://doi.org/10.1029/2018JC014719

    Article  Google Scholar 

  5. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:e1700782. https://doi.org/10.1126/sciadv.1700782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Global plastic production 1950–2019. In: Statista. https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/. Accessed 14 Jul 2021

  7. Kane IA, Clare MA (2019) Dispersion, accumulation, and the ultimate fate of microplastics in deep-marine environments: a review and future directions. Front Earth Sci. https://doi.org/10.3389/feart.2019.00080

    Article  Google Scholar 

  8. Hwang J, Choi D, Han S et al (2020) Potential toxicity of polystyrene microplastic particles. Sci Rep 10:7391. https://doi.org/10.1038/s41598-020-64464-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Efimova I, Bagaeva M, Bagaev A et al (2018) Secondary microplastics generation in the sea swash zone with coarse bottom sediments: laboratory experiments. Front Mar Sci. https://doi.org/10.3389/fmars.2018.00313

    Article  Google Scholar 

  10. Lehtiniemi M, Hartikainen S, Näkki P et al (2018) Size matters more than shape: Ingestion of primary and secondary microplastics by small predators. Food Webs 17:e00097. https://doi.org/10.1016/j.fooweb.2018.e00097

    Article  Google Scholar 

  11. Auta HS, Emenike CU, Fauziah SH (2017) Distribution and importance of microplastics in the marine environment: a review of the sources, fate, effects, and potential solutions. Environ Int 102:165–176. https://doi.org/10.1016/j.envint.2017.02.013

    Article  CAS  PubMed  Google Scholar 

  12. Möhlenkamp P, Purser A, Thomsen L (2018) Plastic microbeads from cosmetic products: an experimental study of their hydrodynamic behaviour, vertical transport and resuspension in phytoplankton and sediment aggregates. Elem Sci Anthropoc. https://doi.org/10.1525/elementa.317

    Article  Google Scholar 

  13. Wardrop P, Shimeta J, Nugegoda D et al (2016) Chemical pollutants sorbed to ingested microbeads from personal care products accumulate in fish. Environ Sci Technol 50:4037–4044. https://doi.org/10.1021/acs.est.5b06280

    Article  CAS  PubMed  Google Scholar 

  14. Tsiota P, Karkanorachaki K, Syranidou E et al (2018) Microbial degradation of HDPE secondary microplastics: preliminary results. In: Cocca M, Di Pace E, Errico ME (eds) Proceedings of the international conference on microplastic pollution in the Mediterranean Sea. Springer, Cham, pp 181–188

    Chapter  Google Scholar 

  15. Jeyasanta KI, Sathish N, Patterson J, Edward JKP (2020) Macro-, meso- and microplastic debris in the beaches of Tuticorin district, Southeast coast of India. Mar Pollut Bull 154:111055. https://doi.org/10.1016/j.marpolbul.2020.111055

    Article  CAS  PubMed  Google Scholar 

  16. Toussaint B, Raffael B, Angers-Loustau A et al (2019) Review of micro- and nanoplastic contamination in the food chain. Food Addit Contam Part A 36:639–673. https://doi.org/10.1080/19440049.2019.1583381

    Article  CAS  Google Scholar 

  17. Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M (2012) Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol 46:3060–3075. https://doi.org/10.1021/es2031505

    Article  CAS  PubMed  Google Scholar 

  18. Martí E, Martin C, Galli M et al (2020) The colors of the ocean plastics. Environ Sci Technol 54:6594–6601. https://doi.org/10.1021/acs.est.9b06400

    Article  CAS  PubMed  Google Scholar 

  19. Lozano YM, Lehnert T, Linck LT et al (2021) Microplastic shape, polymer type, and concentration affect soil properties and plant biomass. Front Plant Sci. https://doi.org/10.3389/fpls.2021.616645

    Article  PubMed  PubMed Central  Google Scholar 

  20. Evangeliou N, Grythe H, Klimont Z et al (2020) Atmospheric transport is a major pathway of microplastics to remote regions. Nat Commun 11:3381. https://doi.org/10.1038/s41467-020-17201-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen Y, Awasthi AK, Wei F et al (2021) Single-use plastics: production, usage, disposal, and adverse impacts. Sci Total Environ 752:141772. https://doi.org/10.1016/j.scitotenv.2020.141772

    Article  CAS  PubMed  Google Scholar 

  22. Sobhani Z, Lei Y, Tang Y et al (2020) Microplastics generated when opening plastic packaging. Sci Rep 10:4841. https://doi.org/10.1038/s41598-020-61146-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xue B, Zhang L, Li R et al (2020) Underestimated microplastic pollution derived from fishery activities and “Hidden” in deep sediment. Environ Sci Technol 54:2210–2217. https://doi.org/10.1021/acs.est.9b04850

    Article  CAS  PubMed  Google Scholar 

  24. Song YK, Hong SH, Jang M et al (2015) Occurrence and distribution of microplastics in the sea surface microlayer in Jinhae Bay, South Korea. Arch Environ Contam Toxicol 69:279–287. https://doi.org/10.1007/s00244-015-0209-9

    Article  CAS  PubMed  Google Scholar 

  25. Dessì C, Okoffo E, O’Brien J et al (2021) Plastics contamination of store-bought rice. J Hazard Mater 416:125778. https://doi.org/10.1016/j.jhazmat.2021.125778

    Article  CAS  PubMed  Google Scholar 

  26. Shruti VC, Pérez-Guevara F, Elizalde-Martínez I, Kutralam-Muniasamy G (2020) First study of its kind on the microplastic contamination of soft drinks, cold tea and energy drinks - future research and environmental considerations. Sci Total Environ 726:138580. https://doi.org/10.1016/j.scitotenv.2020.138580

    Article  CAS  PubMed  Google Scholar 

  27. Busse K, Ebner I, Humpf H-U et al (2020) Comment on “Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea.” Environ Sci Technol 54:14134–14135. https://doi.org/10.1021/acs.est.0c03182

    Article  CAS  PubMed  Google Scholar 

  28. Cox KD, Covernton GA, Davies HL et al (2019) Human consumption of microplastics. Environ Sci Technol 53:7068–7074. https://doi.org/10.1021/acs.est.9b01517

    Article  CAS  PubMed  Google Scholar 

  29. Fadare OO, Wan B, Guo L-H, Zhao L (2020) Microplastics from consumer plastic food containers: are we consuming it? Chemosphere 253:126787. https://doi.org/10.1016/j.chemosphere.2020.126787

    Article  CAS  PubMed  Google Scholar 

  30. Park H-J, Oh M-J, Kim P-G et al (2020) National reconnaissance survey of microplastics in municipal wastewater treatment plants in Korea. Environ Sci Technol 54:1503–1512. https://doi.org/10.1021/acs.est.9b04929

    Article  PubMed  Google Scholar 

  31. Murphy F, Ewins C, Carbonnier F, Quinn B (2016) Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ Sci Technol 50:5800–5808. https://doi.org/10.1021/acs.est.5b05416

    Article  CAS  PubMed  Google Scholar 

  32. Mbachu O, Jenkins G, Kaparaju P, Pratt C (2021) The rise of artificial soil carbon inputs: reviewing microplastic pollution effects in the soil environment. Sci Total Environ 780:146569. https://doi.org/10.1016/j.scitotenv.2021.146569

    Article  CAS  PubMed  Google Scholar 

  33. Werbowski LM, Gilbreath AN, Munno K et al (2021) Urban stormwater runoff: a major pathway for anthropogenic particles, black rubbery fragments, and other types of microplastics to urban receiving waters. ACS EST Water 1:1420–1428. https://doi.org/10.1021/acsestwater.1c00017

    Article  CAS  Google Scholar 

  34. Cai Y, Yang T, Mitrano DM et al (2020) Systematic study of microplastic fiber release from 12 different polyester textiles during washing. Environ Sci Technol 54:4847–4855. https://doi.org/10.1021/acs.est.9b07395

    Article  CAS  PubMed  Google Scholar 

  35. Napper IE, Thompson RC (2016) Release of synthetic microplastic plastic fibres from domestic washing machines: effects of fabric type and washing conditions. Mar Pollut Bull 112:39–45. https://doi.org/10.1016/j.marpolbul.2016.09.025

    Article  CAS  PubMed  Google Scholar 

  36. Westphalen H, Abdelrasoul A (2017) Challenges and treatment of microplastics in water. IntechOpen, London

    Google Scholar 

  37. Roch S, Brinker A (2017) Rapid and efficient method for the detection of microplastic in the gastrointestinal tract of fishes. Environ Sci Technol 51:4522–4530. https://doi.org/10.1021/acs.est.7b00364

    Article  CAS  PubMed  Google Scholar 

  38. Nguyen B, Claveau-Mallet D, Hernandez LM et al (2019) Separation and analysis of microplastics and nanoplastics in complex environmental samples. Acc Chem Res 52:858–866. https://doi.org/10.1021/acs.accounts.8b00602

    Article  CAS  PubMed  Google Scholar 

  39. Kang J, Zhou L, Duan X et al (2019) Degradation of cosmetic microplastics via functionalized carbon nanosprings. Matter 1:745–758. https://doi.org/10.1016/j.matt.2019.06.004

    Article  CAS  Google Scholar 

  40. Rius-Ayra O, Bouhnouf-Riahi O, LLorca-Isern N (2020) Superhydrophobic and sustainable nanostructured powdered iron for the efficient separation of oil-in-water emulsions and the capture of microplastics. ACS Appl Mater Interfaces 12:45629–45640. https://doi.org/10.1021/acsami.0c13876

    Article  CAS  PubMed  Google Scholar 

  41. Gewert B, Plassmann MM, MacLeod M (2015) Pathways for degradation of plastic polymers floating in the marine environment. Environ Sci Process Impacts 17:1513–1521. https://doi.org/10.1039/C5EM00207A

    Article  CAS  PubMed  Google Scholar 

  42. Peng R, Xia M, Ru J et al (2018) Microbial degradation of polyurethane plastics. Sheng Wu Gong Cheng Xue Bao 34:1398–1409. https://doi.org/10.13345/j.cjb.170532

    Article  CAS  PubMed  Google Scholar 

  43. Schyns ZOG, Shaver MP (2021) Mechanical recycling of packaging plastics: a review. Macromol Rapid Commun 42:2000415. https://doi.org/10.1002/marc.202000415

    Article  CAS  Google Scholar 

  44. Kumar A, Alam A, Rani M et al (2017) Biofilms: survival and defense strategy for pathogens. Int J Med Microbiol 307:481–489. https://doi.org/10.1016/j.ijmm.2017.09.016

    Article  CAS  PubMed  Google Scholar 

  45. Ghatge S, Yang Y, Ahn J-H, Hur H-G (2020) Biodegradation of polyethylene: a brief review. Appl Biol Chem 63:27. https://doi.org/10.1186/s13765-020-00511-3

    Article  CAS  Google Scholar 

  46. Urbanek AK, Rymowicz W, Mirończuk AM (2018) Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl Microbiol Biotechnol 102:7669–7678. https://doi.org/10.1007/s00253-018-9195-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hadad D, Geresh S, Sivan A (2005) Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol 98:1093–1100. https://doi.org/10.1111/j.1365-2672.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  48. Yang Y, Yang J, Wu W et al (2015) Biodegradation and mineralization of polystyrene by plastic-eating mealworms. 2. Role of gut microorganisms. Environ Sci Technol. https://doi.org/10.1021/acs.est.5b02663

    Article  PubMed  Google Scholar 

  49. Li J, Kim HR, Lee HM et al (2020) Rapid biodegradation of polyphenylene sulfide plastic beads by Pseudomonas sp. Sci Total Environ 720:137616. https://doi.org/10.1016/j.scitotenv.2020.137616

    Article  CAS  PubMed  Google Scholar 

  50. Eyheraguibel B, Traikia M, Fontanella S et al (2017) Characterization of oxidized oligomers from polyethylene films by mass spectrometry and NMR spectroscopy before and after biodegradation by a Rhodococcus rhodochrous strain. Chemosphere 184:366–374. https://doi.org/10.1016/j.chemosphere.2017.05.137

    Article  CAS  PubMed  Google Scholar 

  51. Park SY, Kim CG (2019) Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site. Chemosphere 222:527–533. https://doi.org/10.1016/j.chemosphere.2019.01.159

    Article  CAS  PubMed  Google Scholar 

  52. Chaudhary AK, Vijayakumar RP (2020) Studies on biological degradation of polystyrene by pure fungal cultures. Environ Dev Sustain 22:4495–4508. https://doi.org/10.1007/s10668-019-00394-5

    Article  Google Scholar 

  53. Zhang J, Gao D, Li Q et al (2020) Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella. Sci Total Environ 704:135931. https://doi.org/10.1016/j.scitotenv.2019.135931

    Article  CAS  PubMed  Google Scholar 

  54. Gajendiran A, Krishnamoorthy S, Abraham J (2016) Microbial degradation of low-density polyethylene (LDPE) by Aspergillus clavatus strain JASK1 isolated from landfill soil. 3 Biotech 6:52. https://doi.org/10.1007/s13205-016-0394-x

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mollea C, Bosco F (2020) Natural rubber biodegradation by Alternaria alternata and Penicillium chrysogenum isolates. Bioremediat J 24:1–17. https://doi.org/10.1080/10889868.2020.1777931

    Article  CAS  Google Scholar 

  56. Lou Y, Ekaterina P, Yang S-S et al (2020) Biodegradation of polyethylene and polystyrene by greater wax moth larvae (Galleria mellonella L.) and the effect of co-diet supplementation on the core gut microbiome. Environ Sci Technol 54:2821–2831. https://doi.org/10.1021/acs.est.9b07044

    Article  CAS  PubMed  Google Scholar 

  57. Peng B-Y, Su Y, Chen Z et al (2019) Biodegradation of polystyrene by dark (Tenebrio obscurus) and yellow (Tenebrio molitor) mealworms (Coleoptera: Tenebrionidae). Environ Sci Technol 53:5256–5265. https://doi.org/10.1021/acs.est.8b06963

    Article  CAS  PubMed  Google Scholar 

  58. Yang Y, Yang J, Wu W-M et al (2015) Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 1. Chemical and physical characterization and isotopic tests. Environ Sci Technol 49:12080–12086. https://doi.org/10.1021/acs.est.5b02661

    Article  CAS  PubMed  Google Scholar 

  59. Yang Y, Wang J, Xia M (2020) Biodegradation and mineralization of polystyrene by plastic-eating superworms Zophobas atratus. Sci Total Environ 708:135233. https://doi.org/10.1016/j.scitotenv.2019.135233

    Article  CAS  PubMed  Google Scholar 

  60. Kundungal H, Manjari G, Sarangapany S et al (2019) Efficient biodegradation of polyethylene (HDPE) waste by the plastic-eating lesser waxworm (Achroia grisella). Environ Sci Pollut Res. https://doi.org/10.1007/s11356-019-05038-9

    Article  Google Scholar 

  61. Rummel CD, Jahnke A, Gorokhova E et al (2017) Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environ Sci Technol Lett 4:258–267. https://doi.org/10.1021/acs.estlett.7b00164

    Article  CAS  Google Scholar 

  62. Ganesh Kumar A, Anjana K, Hinduja M, Sujitha K, Dharani G (2020) Review on plastic wastes in marine environment – biodegradation and biotechnological solutions. Mar Pollut Bull 150:110733. https://doi.org/10.1016/j.marpolbul.2019.110733

    Article  CAS  Google Scholar 

  63. Rinanda T, Fathima R, Ramadhani R (2019) Microbiological perspectives on the effects of microplastics on the aquatic environment. IOP Conf Ser Earth Environ Sci 348:012048. https://doi.org/10.1088/1755-1315/348/1/012048

    Article  Google Scholar 

  64. Chamas A, Moon H, Zheng J et al (2020) Degradation rates of plastics in the environment. ACS Sustain Chem Eng 8:3494–3511. https://doi.org/10.1021/acssuschemeng.9b06635

    Article  CAS  Google Scholar 

  65. Anjum M, Miandad R, Waqas M et al (2019) Remediation of wastewater using various nano-materials. Arab J Chem 12:4897–4919. https://doi.org/10.1016/j.arabjc.2016.10.004

    Article  CAS  Google Scholar 

  66. Llorente-García BE, Hernández-López JM, Zaldívar-Cadena AA et al (2020) First insights into photocatalytic degradation of HDPE and LDPE microplastics by a mesoporous N-TiO2 coating: effect of size and shape of microplastics. Coatings 10:658. https://doi.org/10.3390/coatings10070658

    Article  CAS  Google Scholar 

  67. Ali SS, Qazi IA, Arshad M et al (2016) Photocatalytic degradation of low density polyethylene (LDPE) films using titania nanotubes. Environ Nanotechnol Monit Manag 5:44–53. https://doi.org/10.1016/j.enmm.2016.01.001

    Article  CAS  Google Scholar 

  68. Ali I, Suhail M, Alothman ZA, Alwarthan A (2018) Recent advances in syntheses, properties and applications of TiO2 nanostructures. RSC Adv 8:30125–30147. https://doi.org/10.1039/C8RA06517A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tofa TS, Kunjali KL, Paul S, Dutta J (2019) Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods. Environ Chem Lett 17:1341–1346. https://doi.org/10.1007/s10311-019-00859-z

    Article  CAS  Google Scholar 

  70. Napper IE, Thompson RC (2020) Plastic debris in the marine environment: history and future challenges. Global Chall 4:1900081. https://doi.org/10.1002/gch2.201900081

    Article  Google Scholar 

  71. Tofa TS, Ye F, Kunjali KL, Dutta J (2019) Enhanced visible light photodegradation of microplastic fragments with plasmonic platinum/zinc oxide nanorod photocatalysts. Catalysts 9:819. https://doi.org/10.3390/catal9100819

    Article  CAS  Google Scholar 

  72. Bandara WRLN, de Silva RM, de Silva KMN et al (2017) Is nano ZrO2 a better photocatalyst than nano TiO2 for degradation of plastics? RSC Adv 7:46155–46163. https://doi.org/10.1039/C7RA08324F

    Article  CAS  Google Scholar 

  73. Ariza-Tarazona MC, Villarreal-Chiu JF, Hernández-López JM et al (2020) Microplastic pollution reduction by a carbon and nitrogen-doped TiO2: effect of pH and temperature in the photocatalytic degradation process. J Hazard Mater 395:122632. https://doi.org/10.1016/j.jhazmat.2020.122632

    Article  CAS  PubMed  Google Scholar 

  74. Firestone G, Huang H, Bochinski JR, Clarke LI (2019) Photothermally-driven thermo-oxidative degradation of low density polyethylene: heterogeneous heating plus a complex reaction leads to homogeneous chemistry. Nanotechnology 30:475706. https://doi.org/10.1088/1361-6528/ab3bc0

    Article  CAS  PubMed  Google Scholar 

  75. Zahra S, Abbas SS, Mahsa M-T, Mohsen N (2010) Biodegradation of low-density polyethylene (LDPE) by isolated fungi in solid waste medium. Waste Manage 30:396–401. https://doi.org/10.1016/j.wasman.2009.09.027

    Article  CAS  Google Scholar 

  76. Zhu K, Jia H, Zhao S et al (2019) Formation of environmentally persistent free radicals on microplastics under light irradiation. Environ Sci Technol 53:8177–8186. https://doi.org/10.1021/acs.est.9b01474

    Article  CAS  PubMed  Google Scholar 

  77. Gardette M, Perthue A, Gardette J-L et al (2013) Photo- and thermal-oxidation of polyethylene: comparison of mechanisms and influence of unsaturation content. Polym Degrad Stab 98:2383–2390. https://doi.org/10.1016/j.polymdegradstab.2013.07.017

    Article  CAS  Google Scholar 

  78. Yaranal NA, Subbiah S, Mohanty K (2021) Distribution and characterization of microplastics in beach sediments from Karnataka (India) coastal environments. Mar Pollut Bull 169:112550. https://doi.org/10.1016/j.marpolbul.2021.112550

    Article  CAS  PubMed  Google Scholar 

  79. Renner G, Sauerbier P, Schmidt TC, Schram J (2019) Robust automatic identification of microplastics in environmental samples using FTIR microscopy. Anal Chem 91:9656–9664. https://doi.org/10.1021/acs.analchem.9b01095

    Article  CAS  PubMed  Google Scholar 

  80. Matsueda M, Mattonai M, Iwai I et al (2021) Preparation and test of a reference mixture of eleven polymers with deactivated inorganic diluent for microplastics analysis by pyrolysis-GC–MS. J Anal Appl Pyrol 154:104993. https://doi.org/10.1016/j.jaap.2020.104993

    Article  CAS  Google Scholar 

  81. Xu G, Cheng H, Jones R et al (2020) Surface-enhanced raman spectroscopy facilitates the detection of microplastics <1 μm in the environment. Environ Sci Technol 54:15594–15603. https://doi.org/10.1021/acs.est.0c02317

    Article  CAS  PubMed  Google Scholar 

  82. Luo H, Xiang Y, Zhao Y et al (2020) Nanoscale infrared, thermal and mechanical properties of aged microplastics revealed by an atomic force microscopy coupled with infrared spectroscopy (AFM-IR) technique. Sci Total Environ 744:140944. https://doi.org/10.1016/j.scitotenv.2020.140944

    Article  CAS  PubMed  Google Scholar 

  83. Yu J, Wang P, Ni F et al (2019) Characterization of microplastics in environment by thermal gravimetric analysis coupled with Fourier transform infrared spectroscopy. Mar Pollut Bull 145:153–160. https://doi.org/10.1016/j.marpolbul.2019.05.037

    Article  CAS  PubMed  Google Scholar 

  84. Chen Y, Wen D, Pei J et al (2020) Identification and quantification of microplastics using Fourier-transform infrared spectroscopy: current status and future prospects. Curr Opin Environ Sci Health 18:14–19. https://doi.org/10.1016/j.coesh.2020.05.004

    Article  Google Scholar 

  85. Cai H, Du F, Li L et al (2019) A practical approach based on FT-IR spectroscopy for identification of semi-synthetic and natural celluloses in microplastic investigation. Sci Total Environ 669:692–701. https://doi.org/10.1016/j.scitotenv.2019.03.124

    Article  CAS  PubMed  Google Scholar 

  86. Syakti AD, Hidayati NV, Jaya YV et al (2018) Simultaneous grading of microplastic size sampling in the small islands of Bintan water, Indonesia. Mar Pollut Bull 137:593–600. https://doi.org/10.1016/j.marpolbul.2018.11.005

    Article  CAS  PubMed  Google Scholar 

  87. Uheida A, Mejía HG, Abdel-Rehim M et al (2021) Visible light photocatalytic degradation of polypropylene microplastics in a continuous water flow system. J Hazard Mater 406:124299. https://doi.org/10.1016/j.jhazmat.2020.124299

    Article  CAS  PubMed  Google Scholar 

  88. Brandon J, Goldstein M, Ohman MD (2016) Long-term aging and degradation of microplastic particles: comparing in situ oceanic and experimental weathering patterns. Mar Pollut Bull 110:299–308. https://doi.org/10.1016/j.marpolbul.2016.06.048

    Article  CAS  PubMed  Google Scholar 

  89. Costa JPD, Nunes AR, Santos PSM et al (2018) Degradation of polyethylene microplastics in seawater: insights into the environmental degradation of polymers. J Environ Sci Health Part A 53:866–875. https://doi.org/10.1080/10934529.2018.1455381

    Article  CAS  Google Scholar 

  90. Auta HS, Emenike CU, Jayanthi B, Fauziah SH (2018) Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Mar Pollut Bull 127:15–21. https://doi.org/10.1016/j.marpolbul.2017.11.036

    Article  CAS  PubMed  Google Scholar 

  91. Löder MGJ, Gerdts G (2015) Methodology used for the detection and identification of microplastics—a critical appraisal. In: Bergmann M, Gutow L, Klages M (eds) marine anthropogenic litter. Springer, Cham, pp 201–227

    Chapter  Google Scholar 

  92. Cabernard L, Roscher L, Lorenz C et al (2018) Comparison of Raman and fourier transform infrared spectroscopy for the quantification of microplastics in the aquatic environment. Environ Sci Technol 52:13279–13288. https://doi.org/10.1021/acs.est.8b03438

    Article  CAS  PubMed  Google Scholar 

  93. Araujo CF, Nolasco MM, Ribeiro AMP, Ribeiro-Claro PJA (2018) Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Res 142:426–440. https://doi.org/10.1016/j.watres.2018.05.060

    Article  CAS  PubMed  Google Scholar 

  94. Schymanski D, Goldbeck C, Humpf H-U, Fürst P (2018) Analysis of microplastics in water by micro-Raman spectroscopy: release of plastic particles from different packaging into mineral water. Water Res 129:154–162. https://doi.org/10.1016/j.watres.2017.11.011

    Article  CAS  PubMed  Google Scholar 

  95. Dong M, Zhang Q, Xing X et al (2020) Raman spectra and surface changes of microplastics weathered under natural environments. Sci Total Environ 739:139990. https://doi.org/10.1016/j.scitotenv.2020.139990

    Article  CAS  PubMed  Google Scholar 

  96. Lam S-M, Sin J-C, Zeng H et al (2021) Green synthesis of Fe-ZnO nanoparticles with improved sunlight photocatalytic performance for polyethylene film deterioration and bacterial inactivation. Mater Sci Semicond Process 123:105574. https://doi.org/10.1016/j.mssp.2020.105574

    Article  CAS  Google Scholar 

  97. Mohammed A, El-Hiti GA, Yousif E et al (2020) Protection of Poly(Vinyl Chloride) films against photodegradation using various valsartan tin complexes. Polymers. https://doi.org/10.3390/polym12040969

    Article  PubMed  PubMed Central  Google Scholar 

  98. Mohammed A, El-Hiti GA, Yousif E et al (2020) Protection of Poly(Vinyl Chloride) films against photodegradation using various valsartan tin complexes. Polymers 12:969. https://doi.org/10.3390/polym12040969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Binnig G, Quate CF, Gerber Ch (1986) Atomic force microscope. Phys Rev Lett 56:930–933. https://doi.org/10.1103/PhysRevLett.56.930

    Article  CAS  PubMed  Google Scholar 

  100. Ni B-J, Zhu Z-R, Li W-H et al (2020) Microplastics mitigation in sewage sludge through pyrolysis: the role of pyrolysis temperature. Environ Sci Technol Lett 7:961–967. https://doi.org/10.1021/acs.estlett.0c00740

    Article  CAS  Google Scholar 

  101. Ribeiro F, Okoffo ED, O’Brien JW et al (2020) Quantitative analysis of selected plastics in high-commercial-value Australian seafood by pyrolysis gas chromatography mass spectrometry. Environ Sci Technol 54:9408–9417. https://doi.org/10.1021/acs.est.0c02337

    Article  CAS  PubMed  Google Scholar 

  102. Hendrickson E, Minor EC, Schreiner K (2018) Microplastic abundance and composition in western lake superior as determined via microscopy, Pyr-GC/MS, and FTIR. Environ Sci Technol 52:1787–1796. https://doi.org/10.1021/acs.est.7b05829

    Article  CAS  PubMed  Google Scholar 

  103. Castelvetro V, Corti A, Biale G et al (2021) New methodologies for the detection, identification, and quantification of microplastics and their environmental degradation by-products. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-12466-z

    Article  Google Scholar 

  104. Rajisha KR, Deepa B, Pothan LA, Thomas S (2011) 9 - Thermomechanical and spectroscopic characterization of natural fibre composites. In: Zafeiropoulos NE (ed) Interface engineering of natural fibre composites for maximum performance. Woodhead Publishing, Sawston, pp 241–274

    Chapter  Google Scholar 

  105. Huppertsberg S, Knepper TP (2018) Instrumental analysis of microplastics—benefits and challenges. Anal Bioanal Chem 410:6343–6352. https://doi.org/10.1007/s00216-018-1210-8

    Article  CAS  PubMed  Google Scholar 

  106. Mansa R, Zou S (2021) Thermogravimetric analysis of microplastics: a mini review. Environ Adv 5:100117. https://doi.org/10.1016/j.envadv.2021.100117

    Article  CAS  Google Scholar 

  107. Majewsky M, Bitter H, Eiche E, Horn H (2016) Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC). Sci Total Environ 568:507–511. https://doi.org/10.1016/j.scitotenv.2016.06.017

    Article  CAS  PubMed  Google Scholar 

  108. Ma J, Sun G, Sun D et al (2021) Application of gel permeation chromatography technology in asphalt materials: a review. Constr Build Mater 278:122386. https://doi.org/10.1016/j.conbuildmat.2021.122386

    Article  CAS  Google Scholar 

  109. Waldman WR, Rillig MC (2020) Microplastic research should embrace the complexity of secondary particles. Environ Sci Technol 54:7751–7753. https://doi.org/10.1021/acs.est.0c02194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang K, Hamidian AH, Tubić A et al (2021) Understanding plastic degradation and microplastic formation in the environment: a review. Environ Pollut 274:116554. https://doi.org/10.1016/j.envpol.2021.116554

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Shamili.B, Manaswini R, Kumar babu. B, Goutam Kumar Dalapati would like to acknowledge SRM University, AP-Andhra Pradesh for the support. Sabyasachi Chakrabortty acknowledges the financial support from SRM University AP, Andhra Pradesh for internal research grant (SRMAP/URG/E&PP/2022-23/014). Sajal Biring acknowledges the financial assistance from Ministry of Science and Technology, Taiwan (Grant No. MOST—110-2221-E-131 -019) and National Science and Technology Council, Taiwan (Grant no. NSTC 112-2221-E-131-008-MY2). Soumabha Bag would like to acknowledge SERB, DST, Govt. of India for Start-up Research Grant (Grant Number: SRG/2022/002245). P.P. thanks SERB, DST, Govt. of India for her research fellowship.

Funding

This study was supported by Department of Science and Technology (DST), Govt. of India for Start-up Research Grant, SRG/2022/002245; Ministry of Science and Technology, Taiwan, MOST - 110-2221-E-131 -019; National Science and Technology Council, Taiwan, NSTC 112-2221-E-131-008-MY2; SRM University AP, Andhra Pradesh, SRMAP/URG/E&PP/2022-23/014.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization—SB, SB, GKD, SB, SC. Methodology—SB, MR, KBB, PP, SB, BC, GKD, SB, SC. Resources—SB, MR, KBB, PP, SB, BC, GKD, SB, SC. Writing—Original Draft—SB, MR, KBB, PP, SB, BC, GKD, SB, SC. Writing—Review & Editing—SB, SB, GKD, SB, SC.

Corresponding authors

Correspondence to Soumabha Bag, Sajal Biring or Sabyasachi Chakrabortty.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandaru, S., Ravipati, M., Busi, K.B. et al. A Review on the Fate of Microplastics: Their Degradation and Advanced Analytical Characterization. J Polym Environ (2023). https://doi.org/10.1007/s10924-023-03102-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-023-03102-7

Keywords

Navigation