Skip to main content
Log in

Influence of Microcrystalline Cellulose on Curing Kinetics, Mechanical and Thermo-Mechanical Properties of Epoxy Methyl Ricinoleate Toughened Epoxy Copolymer

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In the present study, an attempt to enhance the mechanical properties and dimensional stability of Epoxy Methyl Ricinoleate (EMR) toughened epoxy was made by incorporating microcrystalline cellulose (MCC) as bio filler thereby encouraging the bio-based theme. The addition of MCC to EMR toughened epoxy enhanced the tensile and storage modulus by up to 43.2 and 22.7% respectively. The effect of MCC on curing kinetics of EMR modified epoxy blend was evaluated using differential scanning calorimetry in non-isothermal mode. The Kissinger–Akahira–Sunose method and autocatalytic model were employed to determine the kinetic parameters. The inclusion of bioresin decreased the activation energy of epoxy by reducing its viscosity, enabling improved interaction between the resin and the crosslinking agent. Conversely, the addition of MCC to the EMR/epoxy blend increased the activation energy required for curing because of the steric effect of MCC and the subsequent rise in viscosity. Dynamic Mechanical analysis revealed raise in storage modulus, glass transition temperature and crosslinking density with increase in MCC content. Thermo-mechanical analyzer confirmed that the incorporation of MCC into the modified epoxy blend led to a reduced coefficient of thermal expansion, indicating improved dimensional stability of the MCC composites. SEM analysis showed effective adhesion between MCC and the matrix, attributed to hydrogen bonding between the carbonyl and hydroxyl groups of EMR and the hydroxyl group of MCC. In brief, the enhanced mechanical and thermo-mechanical properties of the MCC-modified EPEMR20 make it a favorable choice for manufacturing hybrid composites suitable for automotive and semi-structural applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Sahoo SK, Mohanty S, Nayak SK (2015) Effect of lignocellulosic fibers on mechanical, thermomechanical and hydrophilic studies of epoxy modified with novel bioresin epoxy methyl ester derived from soybean oil. Polym Adv Technol 26:1619–1626. https://doi.org/10.1002/pat.3592

    Article  CAS  Google Scholar 

  2. Prasad V, Sekar K, Varghese S, Joseph MA (2020) Evaluation of interlaminar fracture toughness and dynamic mechanical properties of nano TiO2 coated flax fibre epoxy composites. Polym Test 91:106784. https://doi.org/10.1016/j.polymertesting.2020.106784

    Article  CAS  Google Scholar 

  3. Parimalam M, Islam MR, Yunus RM (2019) Effects of nanosilica and titanium oxide on the performance of epoxy–amine nanocoatings. J Appl Polym Sci 136:1–9. https://doi.org/10.1002/app.47901

    Article  CAS  Google Scholar 

  4. Sankar lal S, Sahoo SK, Kannan S (2022) Investigation on curing kinetics, water diffusion kinetics and thermo- mechanical properties of functionalized castor oil based epoxy copolymers. J Polym Res. https://doi.org/10.1007/s10965-022-03122-2

    Article  Google Scholar 

  5. Kadam A, Pawar M, Yemul O et al (2015) Biodegradable biobased epoxy resin from karanja oil. Polymers 72:82–92. https://doi.org/10.1016/j.polymer.2015.07.002

    Article  CAS  Google Scholar 

  6. Hernandez ED, Bassett AW, Sadler JM et al (2016) Synthesis and characterization of bio-based epoxy resins derived from vanillyl alcohol. ACS Sustain Chem Eng 4:4328–4339. https://doi.org/10.1021/acssuschemeng.6b00835

    Article  CAS  Google Scholar 

  7. Kumar S, Samal SK, Mohanty S, Nayak SK (2018) Bio-based tri-functional epoxy resin (TEIA) blend cured with anhydride (MHHPA) based cross-linker: thermal, mechanical and morphological characterization. J Macromol Sci Part A Pure Appl Chem 55:496–506. https://doi.org/10.1080/10601325.2018.1470468

    Article  CAS  Google Scholar 

  8. Sathyaraj S, Sekar K (2021) Recent advances in bio-based sustainable aliphatic and aromatic epoxy resins for composite applications. Key Eng Mater 882:121–131. https://doi.org/10.4028/www.scientific.net/KEM.882.121

    Article  Google Scholar 

  9. Kumar S, Krishnan S, Samal SK et al (2018) Toughening of petroleum based (DGEBA) epoxy resins with various renewable resources based flexible chains for high performance applications: a review. Ind Eng Chem Res 57:2711–2726. https://doi.org/10.1021/acs.iecr.7b04495

    Article  CAS  Google Scholar 

  10. Parimalam M, Islam MR, Yunus RM (2018) Effects of nanosilica, zinc oxide, titatinum oxide on the performance of epoxy hybrid nanocoating in presence of rubber latex. Polym Test 70:197–207. https://doi.org/10.1016/j.polymertesting.2018.07.008

    Article  CAS  Google Scholar 

  11. Sumdani MG, Islam MR, Yahaya ANA (2019) The effects of anionic surfactant on the mechanical, thermal, structure and morphological properties of epoxy–MWCNT composites. Polym Bull 76:5919–5938. https://doi.org/10.1007/s00289-019-02695-1

    Article  CAS  Google Scholar 

  12. Sumdani MG, Islam MR, Yahaya ANA (2018) Effects of variation of steric repulsion between multiwall carbon nanotubes and anionic surfactant in epoxy nanocomposites. J Appl Polym Sci 135:1–8. https://doi.org/10.1002/app.46883

    Article  CAS  Google Scholar 

  13. Islam MR, Parimalam M, Sumdani MG et al (2020) Rheological and antimicrobial properties of epoxy-based hybrid nanocoatings. Polym Test 81:106202. https://doi.org/10.1016/j.polymertesting.2019.106202

    Article  CAS  Google Scholar 

  14. Kerche EF, da Silva VD, Fonseca E et al (2021) Epoxy-based composites reinforced with imidazolium ionic liquid-treated aramid pulp. Polymers. https://doi.org/10.1016/j.polymer.2021.123787

    Article  Google Scholar 

  15. Ramesh P, Prasad BD, Narayana KL (2020) Effect of MMT clay on mechanical, thermal and barrier properties of treated aloevera fiber/ PLA-hybrid biocomposites. Silicon 12:1751–1760. https://doi.org/10.1007/s12633-019-00275-6

    Article  CAS  Google Scholar 

  16. Arun Prakash VR, Viswanthan R (2019) Fabrication and characterization of echinoidea spike particles and kenaf natural fibre-reinforced Azadirachta-indica blended epoxy multi-hybrid bio composite. Compos Part A Appl Sci Manuf 118:317–326. https://doi.org/10.1016/j.compositesa.2019.01.008

    Article  CAS  Google Scholar 

  17. Kavimani V, Soorya Prakash K, Thankachan T, Udayakumar R (2020) Synergistic improvement of epoxy derived polymer composites reinforced with graphene oxide (GO) plus titanium di oxide(TiO2). Compos Part B Eng 191:107911. https://doi.org/10.1016/j.compositesb.2020.107911

    Article  CAS  Google Scholar 

  18. Zulsyafiq M, Islam MR, Sumdani MG, Firouzi A (2020) Effect of preheat and encapsulation of steel particles on the interaction with bisphenol A composites. Polym Test 89:106611. https://doi.org/10.1016/j.polymertesting.2020.106611

    Article  CAS  Google Scholar 

  19. Hani F, Firouzi A, Islam MR, Sumdani MG (2021) Mechanical and thermal properties of fishbone-based epoxy composites: the effects of thermal treatment. Polym Compos 42:1224–1234. https://doi.org/10.1002/pc.25895

    Article  CAS  Google Scholar 

  20. do Nascimento NR, Pinheiro IF, Alves GF et al (2021) Role of cellulose nanocrystals in epoxy-based nanocomposites: mechanical properties, morphology and thermal behavior. Polimeros. https://doi.org/10.1590/0104-1428.20210057

    Article  Google Scholar 

  21. Stanley WF, Bandaru AK, Rana S et al (2021) Mechanical, dynamic-mechanical and wear performance of novel non-crimp glass fabric-reinforced liquid thermoplastic composites filled with cellulose microcrystals. Mater Des 212:110276. https://doi.org/10.1016/j.matdes.2021.110276

    Article  CAS  Google Scholar 

  22. Nagarajan KJ, Balaji AN, Basha KS et al (2020) International journal of biological macromolecules effect of agro waste α-cellulosic micro fi ller on mechanical and thermal behavior of epoxy composites. Int J Biol Macromol 152:327–339

    Article  CAS  PubMed  Google Scholar 

  23. Trache D, Hussin MH, Hui Chuin CT et al (2016) Microcrystalline cellulose: isolation, characterization and bio-composites application—a review. Int J Biol Macromol 93:789–804. https://doi.org/10.1016/j.ijbiomac.2016.09.056

    Article  CAS  PubMed  Google Scholar 

  24. Bessa W, Tarchoun AF, Trache D, Derradji M (2021) Preparation of amino-functionalized microcrystalline cellulose from Arundo Donax L. and its effect on the curing behavior of bisphenol a–based benzoxazine. Thermochim Acta 698:178882. https://doi.org/10.1016/j.tca.2021.178882

    Article  CAS  Google Scholar 

  25. Bessa W, Trache D, Derradji M et al (2020) Characterization of raw and treated Arundo donax L. cellulosic fibers and their effect on the curing kinetics of bisphenol a-based benzoxazine. Int J Biol Macromol 164:2931–2943. https://doi.org/10.1016/j.ijbiomac.2020.08.179

    Article  CAS  PubMed  Google Scholar 

  26. Gonçalves FAMM, Santos M, Cernadas T et al (2022) Influence of fillers on epoxy resins properties: a review. J Mater Sci 57:15183–15212. https://doi.org/10.1007/s10853-022-07573-2

    Article  ADS  CAS  Google Scholar 

  27. Yue L, Maiorana A, Khelifa F et al (2018) Surface-modified cellulose nanocrystals for biobased epoxy nanocomposites. Polymers 134:155–162. https://doi.org/10.1016/j.polymer.2017.11.051

    Article  CAS  Google Scholar 

  28. Wang M, Yu T, Feng Z et al (2020) Preparation of 3-aminopropyltriethoxy silane modified cellulose microcrystalline and their applications as flame retardant and reinforcing agents in epoxy resin. Polym Adv Technol 31:1340–1348. https://doi.org/10.1002/pat.4863

    Article  CAS  Google Scholar 

  29. Pichandi S, Rana S, Parveen S, Fangueiro R (2018) A green approach of improving interface and performance of plant fibre composites using microcrystalline cellulose. Carbohydr Polym 197:137–146. https://doi.org/10.1016/j.carbpol.2018.05.074

    Article  CAS  PubMed  Google Scholar 

  30. Li WC, Deng SP, Liu YG, Xuan L (2011) Reaction kinetics investigation of NVP in HPDLC gratings. Spectrosc Spectr Anal 31:1042–1046. https://doi.org/10.3964/j.issn.1000-0593(2011)04-1042-05

    Article  CAS  Google Scholar 

  31. Fu Q, Tan J, Han C et al (2020) Synthesis and curing properties of castor oil-based triglycidyl ether epoxy resin. Polym Adv Technol 31:2552–2560. https://doi.org/10.1002/pat.4982

    Article  CAS  Google Scholar 

  32. Sudha GS, Kalita H, Mohanty S, Nayak SK (2017) Castor oil modified by epoxidation, transesterification, and acrylation processes: spectroscopic characteristics. Int J Polym Anal Charact 22:519–525. https://doi.org/10.1080/1023666X.2017.1334171

    Article  CAS  Google Scholar 

  33. Paluvai NR, Mohanty S, Nayak SK (2015) Mechanical and thermal properties of sisal fiber reinforced acrylated epoxidized castor oil toughened diglycidyl ether of bisphenol A epoxy nanocomposites. J Reinf Plast Compos. https://doi.org/10.1177/0731684415595126

    Article  Google Scholar 

  34. Sudha GS, Kalita H, Mohanty S, Nayak SK (2017) Biobased epoxy blends from epoxidized castor oil: effect on mechanical, thermal, and morphological properties. Macromol Res 25:420–430. https://doi.org/10.1007/s13233-017-5063-3

    Article  CAS  Google Scholar 

  35. Sahoo SK, Khandelwal V, Manik G (2018) Renewable approach to synthesize highly toughened bioepoxy from castor oil derivative-epoxy methyl ricinoleate and cured with biorenewable phenalkamine. Ind Eng Chem Res 57:11323–11334. https://doi.org/10.1021/acs.iecr.8b02043

    Article  CAS  Google Scholar 

  36. Kuo PY, Yan N, Sain M (2013) Influence of cellulose nanofibers on the curing behavior of epoxy/amine systems. Eur Polym J 49:3778–3787. https://doi.org/10.1016/j.eurpolymj.2013.08.022

    Article  CAS  Google Scholar 

  37. Vyazovkin S, Chrissafis K, Di Lorenzo ML et al (2014) ICTAC kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta 590:1–23. https://doi.org/10.1016/j.tca.2014.05.036

    Article  CAS  Google Scholar 

  38. Ma IAW, Shafaamri A, Kasi R et al (2017) Anticorrosion properties of epoxy/nanocellulose nanocomposite coating. BioResources 12:2912–2929. https://doi.org/10.15376/biores.12.2.2912-2929

    Article  CAS  Google Scholar 

  39. Motta Neves R, Zattera AJ, Campos Amico S (2021) Enhancing thermal and dynamic-mechanical properties of epoxy reinforced by amino-functionalized microcrystalline cellulose. J Appl Polym Sci 138:1–11. https://doi.org/10.1002/app.51329

    Article  CAS  Google Scholar 

  40. Azman NAN, Islam MR, Parimalam M et al (2020) Mechanical, structural, thermal and morphological properties of epoxy composites filled with chicken eggshell and inorganic CaCO3 particles. Polym Bull 77:805–821. https://doi.org/10.1007/s00289-019-02779-y

    Article  CAS  Google Scholar 

  41. Barczewski M, Sałasińska K, Szulc J (2019) Application of sunflower husk, hazelnut shell and walnut shell as waste agricultural fillers for epoxy-based composites: a study into mechanical behavior related to structural and rheological properties. Polym Test 75:1–11. https://doi.org/10.1016/j.polymertesting.2019.01.017

    Article  CAS  Google Scholar 

  42. Zaini MJ, Fuad MYA, Ismail Z et al (1996) The effect of filler content and size on the mechanical properties of polypropylene/oil palm wood flour composites. Polym Int 40:51–55.

    Article  CAS  Google Scholar 

  43. Sahoo SK, Mohanty S, Nayak SK (2015) Study of thermal stability and thermo-mechanical behavior of functionalized soybean oil modified toughened epoxy/organo clay nanocomposite. Prog Org Coat 88:263–271. https://doi.org/10.1016/j.porgcoat.2015.07.012

    Article  CAS  Google Scholar 

  44. Sikhosana ST, Motloung B, Gumede TP et al (2023) The influence of cellulose content on the morphology, thermal, and mechanical properties of poly (lactic acid)/Eucomis autumnalis cellulose biocomposites. Polym Eng Sci. https://doi.org/10.1002/pen.26293

    Article  Google Scholar 

  45. Yu M, Fu Q, Zhang T et al (2021) Properties and curing kinetics of epoxy resin toughened by dimer acid diglycidyl ester. Thermochim Acta. https://doi.org/10.1016/j.tca.2021.178910

    Article  Google Scholar 

  46. Zolghadr M, Zohuriaan-Mehr MJ, Shakeri A, Salimi A (2019) Epoxy resin modification by reactive bio-based furan derivatives: curing kinetics and mechanical properties. Thermochim Acta 673:147–157. https://doi.org/10.1016/j.tca.2019.01.025

    Article  CAS  Google Scholar 

  47. Aradhana R, Mohanty S, Nayak SK (2018) High performance epoxy nanocomposite adhesive: effect of nanofillers on adhesive strength, curing and degradation kinetics. Int J Adhes Adhes 84:238–249. https://doi.org/10.1016/j.ijadhadh.2018.03.013

    Article  CAS  Google Scholar 

  48. Das G, Karak N (2009) Vegetable oil-based flame retardant epoxy/clay nanocomposites. Polym Degrad Stab 94:1948–1954. https://doi.org/10.1016/j.polymdegradstab.2009.07.028

    Article  CAS  Google Scholar 

  49. Wan J, Bu ZY, Xu CJ et al (2011) Preparation, curing kinetics, and properties of a novel low-volatile starlike aliphatic-polyamine curing agent for epoxy resins. Chem Eng J 171:357–367. https://doi.org/10.1016/j.cej.2011.04.004

    Article  CAS  Google Scholar 

  50. Sahoo SK, Mohanty S, Nayak SK (2015) A study on effect of organo modified clay on curing behavior and thermo-physical properties of epoxy methyl ester based epoxy nanocomposite. Thermochim Acta 614:163–170. https://doi.org/10.1016/j.tca.2015.06.021

    Article  CAS  Google Scholar 

  51. Kumar S, Samal SK, Mohanty S, Nayak SK (2019) Curing kinetics of bio-based epoxy resin-toughened DGEBA epoxy resin blend: synthesis and characterization. J Therm Anal Calorim 137:1567–1578. https://doi.org/10.1007/s10973-019-08080-4

    Article  CAS  Google Scholar 

  52. Ran Z, Liu X, Jiang X et al (2020) Study on curing kinetics of epoxy-amine to reduce temperature caused by the exothermic reaction. Thermochim Acta 692:178735. https://doi.org/10.1016/j.tca.2020.178735

    Article  CAS  Google Scholar 

  53. Kumar S, Samal SK, Mohanty S, Nayak SK (2017) Study of curing kinetics of anhydride cured petroleum-based (DGEBA) epoxy resin and renewable resource based epoxidized soybean oil (ESO) systems catalyzed by 2-methylimidazole. Thermochim Acta 654:112–120. https://doi.org/10.1016/j.tca.2017.05.016

    Article  CAS  Google Scholar 

  54. Sbirrazzuoli N, Vyazovkin S (2002) Learning about epoxy cure mechanisms from isoconversional analysis of DSC data. Thermochim Acta 388:289–298. https://doi.org/10.1016/S0040-6031(02)00053-9

    Article  CAS  Google Scholar 

  55. Ryu SH, Sin JH, Shanmugharaj AM (2014) Study on the effect of hexamethylene diamine functionalized graphene oxide on the curing kinetics of epoxy nanocomposites. Eur Polym J 52:88–97. https://doi.org/10.1016/j.eurpolymj.2013.12.014

    Article  CAS  Google Scholar 

  56. Vyazovkin S, Sbirrazzuoli N (1996) Mechanism and kinetics of epoxy-amine cure studied by differential scanning calorimetry. Macromolecules 29:1867–1873. https://doi.org/10.1021/ma951162w

    Article  ADS  CAS  Google Scholar 

  57. Zheng T, Xi H, Wang Z et al (2020) The curing kinetics and mechanical properties of epoxy resin composites reinforced by PEEK microparticles. Polym Test 91:106781. https://doi.org/10.1016/j.polymertesting.2020.106781

    Article  CAS  Google Scholar 

  58. Zheng T, Wang X, Lu C et al (2019) Studies on curing kinetics and tensile properties of silica-filled phenolic amine/epoxy resin nanocomposite. Polym (Basel). https://doi.org/10.3390/polym11040680

    Article  Google Scholar 

  59. Sbirrazzuoli N, Mititelu-Mija A, Vincent L, Alzina C (2006) Isoconversional kinetic analysis of stoichiometric and off-stoichiometric epoxy-amine cures. Thermochim Acta 447:167–177. https://doi.org/10.1016/j.tca.2006.06.005

    Article  CAS  Google Scholar 

  60. Sankar Lal S, Kannan S, Sahoo SK (2023) Investigation on the effect of castor-oil based bio-resins on mechanical, visco-elastic, and water diffusion properties of flax fiber reinforced epoxy composites. Polym Compos. https://doi.org/10.1002/pc.27410

    Article  Google Scholar 

  61. Sahoo SK, Khandelwal V, Manik G (2018) Development of toughened bio-based epoxy with epoxidized linseed oil as reactive diluent and cured with bio-renewable crosslinker. Polym Adv Technol 29:565–574. https://doi.org/10.1002/pat.4166

    Article  CAS  Google Scholar 

  62. Prasad V, Joseph MA, Sekar K (2018) Investigation of mechanical, thermal and water absorption properties of fibre ax flax reinforced epoxy composite with nano TiO2 addition. Compos Part A 115:360–370. https://doi.org/10.1016/j.compositesa.2018.09.031

    Article  CAS  Google Scholar 

  63. Saba N, Jawaid M, Alothman OY, Paridah MT (2016) A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr Build Mater 106:149–159. https://doi.org/10.1016/j.conbuildmat.2015.12.075

    Article  CAS  Google Scholar 

  64. Sankar lal S, Kannan S, Sahoo SK (2022) Influence of flax fiber orientation on mechanical, thermo-mechanical and interfacial adhesion properties of epoxidized methyl ricinoleate modified epoxy composite: a sustainable green composite for cleaner production. Mater Today Commun 33:104648. https://doi.org/10.1016/j.mtcomm.2022.104648

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author, Sathyaraj Sankarlal, expresses gratitude to the National Institute of Technology, Calicut, Kerala, India, for providing the scholarship, contingency, TEQIP, Innovative project fund 2022–23 and Plan Fund research grant that facilitated the execution of this research work smoothly. Special thanks are extended to Dr. M. A. Joseph, Professor and Head of the Department of Mechanical Engineering at NIT Calicut, and Dr. Sushant Kumar Sahoo of CSIR NIIST for their unwavering support throughout the research. The author also thank Mr. Nithin Das K.P, PG Scholar (Materials Science and Technology), NIT Calicut for his contribution.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

SSL: Conceptualization, Methodology, Investigation, Characterizing the samples, Writing—original draft, Formal analysis, Validation, Writing—review & editing. SK: Resources, Supervision, Writing—review & editing.

Corresponding author

Correspondence to Sathyaraj Sankar Lal.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankar Lal, S., Kannan, S. Influence of Microcrystalline Cellulose on Curing Kinetics, Mechanical and Thermo-Mechanical Properties of Epoxy Methyl Ricinoleate Toughened Epoxy Copolymer. J Polym Environ 32, 913–934 (2024). https://doi.org/10.1007/s10924-023-03046-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-03046-y

Keywords

Navigation