Skip to main content
Log in

Development of an Intelligent Packaging System Based on Gelatin/Chitosan Nanofibers and Containing β-Cyclodextrin/Viola odorata L. Anthocyanins Complex

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The object of this study was the production of a film based on gelatin and chitosan nanofiber (CNF) and containing β-cyclodextrin/Viola odorata L. (β-CD/viola) inclusion complex to monitor fish freshness and spoilage. As a result, the addition of CNF improved the surface morphology and crystalline structure of the films. The addition of the β-CD/viola complex had no adverse effect on the surface morphology and crystalline structure of the film. In addition, gelatin-based films containing β-CD/viola complex had better water vapor permeability, mechanical properties, and antioxidant activity compared to pure gelatin films. The films incorporated with β-CD/viola complex showed considerable sensitivity against pH changes and ammonia gas, and their color changed from slightly brutal pink to green by increasing pH from 2 to 12. Furthermore, the developed smart colorimetric film is used as an indicator for monitoring Kilka fish spoilage. At the end of the storage time of fish, the color of the indicator film changed from khaki to yellow-green, and its color sensitivity (SRGB) was increased to 9.93%. In conclusion, the gelatin-CNF film containing β-CD/viola complex showed a significant potential for monitoring food spoilage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data are available on request due to privacy or other restrictions.

References

  1. Gasti T, Dixit S, D’souza OJ et al (2021) Smart biodegradable films based on chitosan/methylcellulose containing Phyllanthus reticulatus anthocyanin for monitoring the freshness of fish fillet. Int J Biol Macromol 187:451–461. https://doi.org/10.1016/j.ijbiomac.2021.07.128

    Article  CAS  PubMed  Google Scholar 

  2. Koshy RR, Reghunadhan A, Mary SK et al (2022) pH indicator films fabricated from soy protein isolate modified with chitin nanowhisker and Clitoria ternatea flower extract. Curr Res Food Sci 5:743–751. https://doi.org/10.1016/j.crfs.2022.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yong H, Liu J (2020) Recent advances in the preparation, physical and functional properties, and applications of anthocyanins-based active and intelligent packaging films. Food Packag Shelf Life 26:100550. https://doi.org/10.1016/j.fpsl.2020.100550

    Article  Google Scholar 

  4. Liu Y, Qin Y, Bai R et al (2019) Preparation of pH-sensitive and antioxidant packaging films based on κ-carrageenan and mulberry polyphenolic extract. Int J Biol Macromol 134:993–1001. https://doi.org/10.1016/j.ijbiomac.2019.05.175

    Article  CAS  PubMed  Google Scholar 

  5. Marand SA, Almasi H, Amjadi S et al (2023) Ixiolirion tataricum mucilage/chitosan based antioxidant films activated by free and nanoliposomal fennel essential oil. Int J Biol Macromol 230:123119. https://doi.org/10.1016/j.ijbiomac.2022.123119

    Article  CAS  PubMed  Google Scholar 

  6. Wang H, Ding F, Ma L, Zhang Y (2021) Edible films from chitosan-gelatin: physical properties and food packaging application. Food Biosci 40:100871. https://doi.org/10.1016/j.fbio.2020.100871

    Article  CAS  Google Scholar 

  7. Luo Q, Hossen MA, Zeng Y et al (2022) Gelatin-based composite films and their application in food packaging: a review. J Food Eng 313:110762. https://doi.org/10.1016/j.jfoodeng.2021.110762

    Article  CAS  Google Scholar 

  8. da Nóbrega Santos E, Cesar de Albuquerque Sousa T, Cassiano de Santana Neto D et al (2022) Edible active film based on gelatin and Malpighia emarginata waste extract to inhibit lipid and protein oxidation in beef patties. LWT 154:112837. https://doi.org/10.1016/j.lwt.2021.112837

    Article  CAS  Google Scholar 

  9. Etxabide A, Kilmartin PA, Maté JI, Gómez-Estaca J (2022) Characterization of glucose-crosslinked gelatin films reinforced with chitin nanowhiskers for active packaging development. LWT 154:112833. https://doi.org/10.1016/j.lwt.2021.112833

    Article  CAS  Google Scholar 

  10. Amjadi S, Almasi H, Pourfathi B, Ranjbaryan S (2021) Gelatin films activated by cinnamon essential oil and reinforced with 1D, 2D and 3D nanomaterials: physical and release controlling properties. J Polym Environ. https://doi.org/10.1007/s10924-021-02097-3

    Article  Google Scholar 

  11. Jagadeesh P, Puttegowda M (2021) Influence of nanofillers on biodegradable composites: a comprehensive review. Polym Compos. https://doi.org/10.1002/pc.26291

    Article  Google Scholar 

  12. Pires J, de Paula CD, Souza VGL et al (2021) Understanding the barrier and mechanical behavior of different nanofillers in chitosan films for food packaging. Polym (Basel) 13:1–25721

    Google Scholar 

  13. Amjadi S, Emaminia S, Heyat Davudian S et al (2019) Preparation and characterization of gelatin-based nanocomposite containing chitosan nanofiber and ZnO nanoparticles. Carbohydr Polym 216:376–384. https://doi.org/10.1016/j.carbpol.2019.03.062

    Article  CAS  PubMed  Google Scholar 

  14. Xue Mei L, Mohammadi Nafchi A, Ghasemipour F et al (2020) Characterization of pH sensitive sago starch films enriched with anthocyanin-rich torch ginger extract. Int J Biol Macromol 164:4603–4612. https://doi.org/10.1016/j.ijbiomac.2020.09.082

    Article  CAS  PubMed  Google Scholar 

  15. Katoch M, Singh A, Singh G et al (2017) Phylogeny, antimicrobial, antioxidant and enzyme-producing potential of fungal endophytes found in Viola odorata. Ann Microbiol 67:529–540. https://doi.org/10.1007/s13213-017-1283-1

    Article  CAS  Google Scholar 

  16. Karioti A, Furlan C, Vincieri FF, Bilia AR (2011) Analysis of the constituents and quality control of Viola odorata aqueous preparations by HPLC-DAD and HPLC-ESI-MS. Anal Bioanal Chem 399:1715–1723. https://doi.org/10.1007/s00216-010-4473-2

    Article  CAS  PubMed  Google Scholar 

  17. Liu L, Wu W, Zheng L et al (2022) Intelligent packaging films incorporated with anthocyanins-loaded ovalbumin-carboxymethyl cellulose nanocomplexes for food freshness monitoring. Food Chem 387:132908. https://doi.org/10.1016/J.FOODCHEM.2022.132908

    Article  CAS  PubMed  Google Scholar 

  18. Qin Y, Yun D, Xu F et al (2021) Smart packaging films based on starch/polyvinyl alcohol and Lycium ruthenicum anthocyanins-loaded nano-complexes: functionality, stability and application. Food Hydrocoll 119:106850. https://doi.org/10.1016/j.foodhyd.2021.106850

    Article  CAS  Google Scholar 

  19. Chen H, Li L, Ma Y et al (2019) Development of active packaging film containing bioactive components encapsulated in β-cyclodextrin and its application. Food Hydrocoll 90:360–366. https://doi.org/10.1016/j.foodhyd.2018.12.043

    Article  CAS  Google Scholar 

  20. Amjadi S, Armanpour V, Ghorbani M et al (2023) Determination of phenolic composition, antioxidant activity, and cytotoxicity characteristics of kombucha beverage containing Echium amoenum. J Food Meas Charact 17:3162–3172. https://doi.org/10.1007/s11694-023-01856-1

    Article  Google Scholar 

  21. Amjadi S, Nazari M, Alizadeh SA, Hamishehkar H (2020) Multifunctional betanin nanoliposomes-incorporated gelatin/chitosan nanofiber/ZnO nanoparticles nanocomposite film for fresh beef preservation. Meat Sci. https://doi.org/10.1016/j.meatsci.2020.108161

    Article  PubMed  Google Scholar 

  22. Alizadeh-Sani M, Tavassoli M, Mohammadian E et al (2021) pH-responsive color indicator films based on methylcellulose/chitosan nanofiber and barberry anthocyanins for real-time monitoring of meat freshness. Int J Biol Macromol 166:741–750. https://doi.org/10.1016/j.ijbiomac.2020.10.231

    Article  CAS  PubMed  Google Scholar 

  23. Alizadeh-Sani M, Tavassoli M, McClements DJ, Hamishehkar H (2021) Multifunctional halochromic packaging materials: saffron petal anthocyanin loaded-chitosan nanofiber/methyl cellulose matrices. Food Hydrocoll 111:106237. https://doi.org/10.1016/j.foodhyd.2020.106237

    Article  CAS  Google Scholar 

  24. Alizadeh Sani M, Tavassoli M, Salim SA et al (2022) Development of green halochromic smart and active packaging materials: TiO2 nanoparticle- and anthocyanin-loaded gelatin/κ-carrageenan films. Food Hydrocoll 124:107324. https://doi.org/10.1016/j.foodhyd.2021.107324

    Article  CAS  Google Scholar 

  25. Sani MA, Tavassoli M, Hamishehkar H, McClements DJ (2021) Carbohydrate-based films containing pH-sensitive red barberry anthocyanins: application as biodegradable smart food packaging materials. Carbohydr Polym 255:117488. https://doi.org/10.1016/j.carbpol.2020.117488

    Article  CAS  PubMed  Google Scholar 

  26. Amjadi S, Almasi H, Hamishehkar H et al (2022) Coating of betanin and carvone co-loaded nanoliposomes with synthesized cationic inulin: a strategy for enhancing the stability and bioavailability. Food Chem. https://doi.org/10.1016/j.foodchem.2021.131403

    Article  PubMed  Google Scholar 

  27. Nikmanesh A, Baghaei H, Nafchi AM (2023) Development and characterization of antioxidant and antibacterial films based on potato starch incorporating Viola odorata extract to improve the oxidative and microbiological quality of chicken fillets during refrigerated storage. Foods 12:2955. https://doi.org/10.3390/FOODS12152955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zawiślak A, Francik R, Francik S, Knapczyk A (2022) Impact of drying conditions on antioxidant activity of red clover (Trifolium pratense), sweet violet (Viola odorata) and elderberry flowers (Sambucus nigra). Mater 15:3317. https://doi.org/10.3390/MA15093317

    Article  Google Scholar 

  29. Souri J, Almasi H, Hamishehkar H, Amjadi S (2021) Sodium caseinate-coated and β-cyclodextrin/vitamin E inclusion complex-loaded nanoliposomes: a novel stabilized nanocarrier. Lwt 151:112174. https://doi.org/10.1016/j.lwt.2021.112174

    Article  CAS  Google Scholar 

  30. Pradhan PC, Mandal A, Dutta A et al (2022) Delineating the behavior of Berberis anthocyanin/β-cyclodextrin inclusion complex in vitro: a molecular dynamics approach. Lwt 157:113090. https://doi.org/10.1016/j.lwt.2022.113090

    Article  CAS  Google Scholar 

  31. Xie J, Xu Y, Shishir MRI et al (2019) Green extraction of mulberry anthocyanin with improved stability using β-cyclodextrin. J Sci Food Agric 99:2494–2503. https://doi.org/10.1002/jsfa.9459

    Article  CAS  PubMed  Google Scholar 

  32. Kim H-J, Roy S, Rhim J-W (2022) Gelatin/agar-based color-indicator film integrated with Clitoria ternatea flower anthocyanin and zinc oxide nanoparticles for monitoring freshness of shrimp. Food Hydrocoll 124:107294. https://doi.org/10.1016/j.foodhyd.2021.107294

    Article  CAS  Google Scholar 

  33. Tessaro L, Lourenço RV, Martelli-Tosi M, do Amaral Sobral PJ (2021) Gelatin/chitosan based films loaded with nanocellulose from soybean straw and activated with Pitanga (Eugenia uniflora L.) leaf hydroethanolic extract in W/O/W emulsion. Int J Biol Macromol 186:328–340. https://doi.org/10.1016/j.ijbiomac.2021.07.039

    Article  CAS  PubMed  Google Scholar 

  34. Ezati P, Bang Y-J, Rhim J-W (2021) Preparation of a shikonin-based pH-sensitive color indicator for monitoring the freshness of fish and pork. Food Chem 337:127995. https://doi.org/10.1016/j.foodchem.2020.127995

    Article  CAS  PubMed  Google Scholar 

  35. Mohammadi M, Mirabzadeh S, Shahvalizadeh R, Hamishehkar H (2020) Development of novel active packaging films based on whey protein isolate incorporated with chitosan nanofiber and nano-formulated cinnamon oil. Int J Biol Macromol 149:11–20

    Article  CAS  PubMed  Google Scholar 

  36. Ezati P, Rhim J-W (2020) pH-responsive chitosan-based film incorporated with alizarin for intelligent packaging applications. Food Hydrocoll 102:105629. https://doi.org/10.1016/j.foodhyd.2019.105629

    Article  CAS  Google Scholar 

  37. Zhang X, Liu Y, Yong H et al (2019) Development of multifunctional food packaging films based on chitosan, TiO2 nanoparticles and anthocyanin-rich black plum peel extract. Food Hydrocoll 94:80–92. https://doi.org/10.1016/j.foodhyd.2019.03.009

    Article  CAS  Google Scholar 

  38. Alizadeh M, Tavassoli M, Hamishehkar H, Julian D (2021) Carbohydrate-based films containing pH-sensitive red barberry anthocyanins: application as biodegradable smart food packaging materials. Carbohydr Polym 255:117488. https://doi.org/10.1016/j.carbpol.2020.117488

    Article  CAS  Google Scholar 

  39. Thakur R, Gupta V, Ghosh T, Das AB (2022) Effect of anthocyanin-natural deep eutectic solvent (lactic acid/fructose) on mechanical, thermal, barrier, and pH-sensitive properties of polyvinyl alcohol based edible films. Food Packag Shelf Life 33:100914. https://doi.org/10.1016/j.fpsl.2022.100914

    Article  CAS  Google Scholar 

  40. Tavassoli M, Sani MA, Khezerlou A et al (2021) Multifunctional nanocomposite active packaging materials: immobilization of quercetin, lactoferrin, and chitosan nanofiber particles in gelatin films. Food Hydrocoll 118:106747. https://doi.org/10.1016/j.foodhyd.2021.106747

    Article  CAS  Google Scholar 

  41. Chen G, Liu B (2016) Cellulose sulfate based film with slow-release antimicrobial properties prepared by incorporation of mustard essential oil and β-cyclodextrin. Food Hydrocoll 55:100–107. https://doi.org/10.1016/j.foodhyd.2015.11.009

    Article  CAS  Google Scholar 

  42. Jiang L, Jia F, Han Y et al (2021) Development and characterization of zein edible films incorporated with catechin/β-cyclodextrin inclusion complex nanoparticles. Carbohydr Polym 261:117877. https://doi.org/10.1016/j.carbpol.2021.117877

    Article  CAS  PubMed  Google Scholar 

  43. Tirtashi FE, Moradi M, Tajik H et al (2019) Cellulose/chitosan pH-responsive indicator incorporated with carrot anthocyanins for intelligent food packaging. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.06.148

    Article  Google Scholar 

  44. Moradi M, Tajik H, Almasi H et al (2019) A novel pH-sensing indicator based on bacterial cellulose nanofibers and black carrot anthocyanins for monitoring fish freshness. Carbohydr Polym 222:115030. https://doi.org/10.1016/j.carbpol.2019.115030

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The financial support from the Drug Applied Research Center, Tabriz University of Medical Sciences (Grant No. 70787) was gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: HH, SA; methodology: SG, MB, TNM, PBH; formal analysis and investigation: SA, SG; writing—original draft preparation: MB, TNM, PBH; writing—review and editing: SA, SG; funding acquisition: HH; resources: SA; supervision: HH.

Corresponding authors

Correspondence to Sajed Amjadi or Hamed Hamishehkar.

Ethics declarations

Competing Interests

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethical Approval

The Ethical Committee of Tabriz University of Medical Sciences approved the study procedure (Approval ID: IR.TBZMED.VCR.REC.1401.278).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1549.3 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amjadi, S., Gholizadeh, S., Hamishehkar, H. et al. Development of an Intelligent Packaging System Based on Gelatin/Chitosan Nanofibers and Containing β-Cyclodextrin/Viola odorata L. Anthocyanins Complex. J Polym Environ 32, 884–897 (2024). https://doi.org/10.1007/s10924-023-03041-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-03041-3

Keywords

Navigation