Skip to main content

Advertisement

Log in

Characterization and Performance of Additive Manufactured Novel bio-waste Polylactic acid eco-friendly Composites

  • OriginalPaper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The present work focusses on developing a completely sustainable, ecological, biodegradable, and eco-friendly composite material for edible as well as health product packaging utilizing an existing production technology. Ground chitin and chitosan powder were blended with eco-friendly polylactic acid (PLA) pellets and transformed into filaments by an extrusion process; thereafter composite parts produced by 3D printing were subjected to mechanical testing, morphological examination, crystallographic examination, chemical composition analysis and thermal analysis. Composite specimens containing chitin and chitosan, respectively, were obtained with varying mass fraction. The 3D printed composite specimen containing respectively chitin and chitosan yielded reduced tensile and flexural properties; for instance, for Chitin/PLA composite with 0.5 wt% (chitin), the tensile strength and flexural strength were 6.9 MPa and 10.4 MPa respectively. The addition of chitin reinforcement to the eco-friendly composite led to increased density with a maximum value of 1.285 g/cm3 for Chitin/PLA composite at 0.5 wt% of chitin reinforcement. However, both Chitosan/PLA and Chitin/PLA composite exhibited enhanced ductility compared to neat PLA. Additionally, the micrographs of the composites revealed the presence of voids and impurity-like particle reflecting decomposed chitin and chitosan. Insights into the chemical bonding and composition were gained by analysing the Fourier transform infrared spectra; analysis of the X-ray diffraction pattern revealed the crystal size and crystallinity index with values of 7.7 nm and 62%, respectively (e.g. Chitin/PLA composite at 0.5 wt%). Finally, the thermogravimetric analysis revealed that both composite materials exhibited a thermal stability of around 257 °C. Altogether, these findings support the use of the Chitosan/PLA and Chitin/PLA composites in applications such as food product packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Research data are not shared.

References

  1. Arul Marcel Moshi A, Ravindran D, Sundara Bharathi SR, Indran S, Saravanakumar SS, Liu Y (2020) Characterization of a new cellulosic natural fiber extracted from the root of Ficus religiosa tree. Int J Biol Macromol 142:212–221. https://doi.org/10.1016/j.ijbiomac.2019.09.094

    Article  CAS  Google Scholar 

  2. Kong X, Luo J, Luo Q, Li Q, Sun G (2022) Experimental study on interface failure behavior of additive manufactured continuous fiber incorporated composites. Additive Manuf 59:103077. https://doi.org/10.1016/j.addma.2022.103077

    Article  CAS  Google Scholar 

  3. Thooyavan Y, Kumaraswamidhas LA, Edwin Raj R, Binoj JS, Brailson Mansingh B (2022) Effect of combined micro and nano silicon carbide particles addition on mechanical, wear and moisture absorption features of basalt bidirectional mat/vinyl ester composites. Polym Compos. https://doi.org/10.1002/pc.26557

    Article  Google Scholar 

  4. Ahuett-Garza JNaranjo-LozadaH, Orta-Castañón P, Wilco MH, Verbeeten (2019) Daniel Sáiz-González, tensile properties and failure behavior of chopped and continuous carbon fiber composites produced by additive manufacturing. Additive Manuf 26:227–241. https://doi.org/10.1016/j.addma.2018.12.020

    Article  CAS  Google Scholar 

  5. Sathish Gandhi VC, Jenish I, Indran S (2022) Yugendra Rajan, mechanical and thermal analysis of cissus quadrangularis stem fiber/epoxy composite with micro-red mud filler composite for structural application. Trans Indian Inst Met 75:737–747. https://doi.org/10.1007/s12666-021-02478-1

    Article  CAS  Google Scholar 

  6. Nekodavan de Werken H, Tekinalp P, Khanbolouki S, Ozcan A, Williams M, Tehrani (2020) Additively manufactured carbon fiber-incorporated composites: state of the art and perspective. Additive Manuf 31:100962. https://doi.org/10.1016/j.addma.2019.100962

    Article  CAS  Google Scholar 

  7. Wang P, Zou B, Ding S, Li L, Huang C (2021) Effects of FDM-3D printing parameters on mechanical properties and microstructure of CF/PEEK and GF/PEEK. Chin J Aeronaut 34(9):236–246. https://doi.org/10.1016/j.cja.2020.05.040

    Article  CAS  Google Scholar 

  8. Wilco MH, Verbeeten (2022) Miriam lorenzo-bañuelos, material extrusion additive manufacturing of poly(Lactic Acid): influence of infill orientation angle. Additive Manuf 59:103079. https://doi.org/10.1016/j.addma.2022.103079

    Article  CAS  Google Scholar 

  9. Shukur Abu Hassan JS, Binoj KL, Goh B, Brailson Mansingh KC, Varaprasad Mohd Yazid, Yahya Faten Ermala, Othman Che, Ahmed Usaid, Nurhadiyanto Didik, Mujiyono AP, Wulandari, (2022) Effect of fiber stacking sequence and orientation on quasi- static indentation properties of sustainable hybrid carbon/ramie fiber epoxy composites. Curr Res Eco-friendly Sustain, Chem 5(1):e100284. https://doi.org/10.1016/j.crgsc.2022.100284

    Article  CAS  Google Scholar 

  10. Suteja NHerlinaS, Ilyas RA, Syafri E, Indran S (2021) Characterization of the density and mechanical properties of corn husk fiber incorporated polyester composites after exposure to ultraviolet light. Funct Compos Struct 3:034001. https://doi.org/10.1088/2631-6331/ac0ed3

    Article  CAS  Google Scholar 

  11. Spackman CC, Frank CR, Picha KC, Samuel J (2016) 3D printing of fiber-incorporated soft composites: process study and material characterization. J Manuf Process 23:296–305. https://doi.org/10.1016/j.jmapro.2016.04.006

    Article  Google Scholar 

  12. Shukur Abu Hassan BMansinghBBinojJS, Mariatti J, Suchart Siengchin M, Liu SMR, Cheng Yu (2021) Saji Raveendran. P, characterization of chemically treated New Natural Cellulosic Fiber from Peduncle of Cocos Nucifera L. Var Typica. Polym Compos 42(12):6403–6416. https://doi.org/10.1002/pc.26307

    Article  CAS  Google Scholar 

  13. Blok LG, Longana ML, Yu H, Woods BKS (2018) An investigation into 3D printing of fiber incorporated thermoplastic composites. Additive Manuf 22:176–186. https://doi.org/10.1016/j.addma.2018.04.039

    Article  CAS  Google Scholar 

  14. Sajin JB, Christu Paul R, Binoj JS, Brailson Mansingh B, Gerald Arul M, Selvan KL, Goh RS, Rimal Isaac MS, Saravanan Senthil (2022) Impact of fiber length on mechanical, morphological and thermal analysis of chemical treated jute fiber polymer composites for sustainable applications. Curr Res Eco-friendly Sustain Chem 5(1):e100241. https://doi.org/10.1016/j.crgsc.2021.100241

    Article  CAS  Google Scholar 

  15. Singh R, Kumar R, Pawanpreet M, Singh J, Singh (2022) On mechanical, thermal and morphological investigation of almond skin powder incorporated polylactic acid feedstock filament. J Thermoplast Compos Mater 35(2):230–248. https://doi.org/10.1177/0892705719886010

    Article  CAS  Google Scholar 

  16. Li Y, Qiu S, Sun J, Ren Y, Wang S, Wang X, Wang W, Li H, Fei B, Gu X, Zhang S (2022) A new strategy to prepare fully bio-based poly(lactic acid) composite with high flame retardancy, UV resistance, and rapid decomposition in soil. Chem Eng J 428:131979. https://doi.org/10.1016/j.cej.2021.131979

    Article  CAS  Google Scholar 

  17. Nandi P, Das D (2022) Mechanical, thermo-mechanical and biodecomposition behaviors of eco-friendly-composites prepared from woven structural nettle (Girardinia diversifolia) reinforcement and poly(lactic acid) fibers. Ind Crops Prod 175:114247. https://doi.org/10.1016/j.indcrop.2021.114247

    Article  CAS  Google Scholar 

  18. Azadeh Sadeghi SMohammadA, Razavi D, Shahrampour (2022) Fabrication and characterization of biodegradable active films with modified morphology based on polycaprolactone-polylactic acid-eco-friendly tea extract. Int J Biol Macromol 205:341–356. https://doi.org/10.1016/j.ijbiomac.2022.02.070

    Article  CAS  PubMed  Google Scholar 

  19. Wu C-S, Wu D-Y, Wang S-S (2022) Antibacterial properties of biobased polyester composites achieved through modification with a thermally treated waste scallop shell. ACS Appl Bio Mater 5(3):1038–1046. https://doi.org/10.1021/acsabm.9b00205

    Article  CAS  PubMed  Google Scholar 

  20. Xin Wang M, Jiang Z, Zhou J, Gou (2017) David Hui, 3D printing of polymer matrix composites: a review and prospective. Compos Part B 110:442–458. https://doi.org/10.1016/j.compositesb.2016.11.034

    Article  CAS  Google Scholar 

  21. Rashid AA, Ahmed W, Khalid MY, Koç M (2021) Vat photopolymerization of polymers and polymer composites: processes and applications. Additive Manuf 47:102279. https://doi.org/10.1016/j.addma.2021.102279

    Article  CAS  Google Scholar 

  22. Thooyavan Y, Kumaraswamidhas LA, Edwin Raj R, Binoj JS, Brailson B, Mansingh (2022) Failure analysis of basalt bidirectional mat incorporated micro/nano SiC particle filled vinyl ester polymer composites. Eng Fail Anal 136:106227. https://doi.org/10.1016/j.engfailanal.2022.106227

    Article  CAS  Google Scholar 

  23. Caputo M, Rashwan O, Waryoba D, McDade K (2022) Surface texture and thermo-mechanical properties of material extruded and ironed polylactic acid. Additive Manuf 59:103084. https://doi.org/10.1016/j.addma.2022.103084

    Article  CAS  Google Scholar 

  24. Brailson Mansingh B, Prem Sai BJS, Shukur Abu Hassan N, Siengchin S, Liu SMR, Cheng Yu (2021) Chemistry 4(1).e100207.https://doi.org/10.1016/j.crgsc.2021.100207

    Article  CAS  Google Scholar 

  25. Rajeshkumar G, Hariharan V, Indran S, Sanjay MR, Siengchin S, Prakash Maran J (2021) Naif Abdullah Al-Dhabi, ponmurugan karuppiah, influence of sodium hydroxide (NaOH) treatment on mechanical properties and morphological behaviour of phoenix sp. fiber/epoxy composites. J Polym Environ 29:765–774. https://doi.org/10.1007/s10924-020-01921-6

    Article  CAS  Google Scholar 

  26. Indran S, Edwin Raj R, Daniel BSS, Saravanakumar SS (2016) Cellulose powder treatment on cissus quadrangularis stem fiber-reinforcement in unsaturated polyester matrix composites. J Incorporated Plast Compos 35(3):212–227. https://doi.org/10.1177/0731684415611756

    Article  CAS  Google Scholar 

  27. Huang J, Chen Z, Wen C, Ling T, Chen Z (2022) Thermally assisted 3D printing of bio-polymer with high solute loading with improved mechanical properties. Additive Manuf 59:103088. https://doi.org/10.1016/j.addma.2022.103088

    Article  CAS  Google Scholar 

  28. Zhang X, Chen L, Mulholland T, Osswald TA (2019) Effects of raster angle on the mechanical properties of PLA and Al/PLA composite part produced by fused deposition modeling. Polym Adv Technol 30(8):2122–2135. https://doi.org/10.1002/pat.4645

    Article  CAS  Google Scholar 

  29. Brailson Mansingh B, Binoj JS, Anbazhagan VN, Hassan SA, Goh KL, Siengchin S, Sanjay MR, Mariatti M, Liu YC (2022) Characterization of Cocos nucifera L peduncle fiber incorporated polymer composites for lightweight sustainable applications. J Appl Polym Sci 139(22):e52245. https://doi.org/10.1002/app.52245

    Article  CAS  Google Scholar 

  30. Arnaldo D, Valino JRyanC, Dizon, Alejandro H, Espera Q Jr, Chen J, Messman RC, Advincula (2019) Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Prog Polym Sci 98:101162. https://doi.org/10.1016/j.progpolymsci.2019.101162

    Article  CAS  Google Scholar 

  31. Hao Liu H, He X, Peng B, Huang J, Li (2019) Three-dimensional printing of poly(lactic acid) bio-based composites with sugarcane bagasse fiber: effect of printing orientation on tensile performance. Polym Adv Technol 30(4):910–922. https://doi.org/10.1002/pat.4524

    Article  CAS  Google Scholar 

  32. Ajinkya Pawar G, Ausias Y-M, Corre Y, Grohens J, Férec (2022) Mastering the density of additive manufactured thermoplastic elastomer foam structures with controlled temperature. Additive Manuf 58:103066. https://doi.org/10.1016/j.addma.2022.103066

    Article  CAS  Google Scholar 

  33. Le Duigou A, Barbé A, Guillou E, Castro M (2019) 3D printing of continuous flax fiber incorporated biocomposites for structural applications. Mater Design 180:107884. https://doi.org/10.1016/j.matdes.2019.107884

    Article  CAS  Google Scholar 

  34. Ryosuke Matsuzaki M, Ueda M, Namiki T-K, Jeong H, Asahara K, Horiguchi T, Nakamura A, Todoroki Y, Hirano (2016) Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci Rep 6:23058. https://doi.org/10.1038/srep23058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tian. YC, Liu X, Cao. T, Li Y (2017) D, 3D printing for continuous fiber incorporated thermoplastic composites: mechanism and performance. Rapid Prototyp J 23(1):209–2015. https://doi.org/10.1108/RPJ-08-2015-0098

    Article  Google Scholar 

  36. Shanmugam V, Das O, Babu K, Marimuthu U, Veerasimman A, Johnson DJ, Neisiany RE, Hedenqvist MS, Ramakrishna S, Berto F (2021) Fatigue behaviour of FDM-additive manufactured polymers, polymeric composites and architected cellular materials. Int J Fatigue 143:106007. https://doi.org/10.1016/j.ijfatigue.2020.106007

    Article  CAS  Google Scholar 

  37. Mei H, Ali Z, Ali YYanI, Cheng L (2019) Influence of mixed isotropic fiber angles and hot press on the mechanical properties of additive manufactured composites. Additive Manuf 27:150–158. https://doi.org/10.1016/j.addma.2019.03.008

    Article  CAS  Google Scholar 

  38. Kumar S, Singh R, Singh TP, Batish A (2022) On investigations of thermal conductivity, circumferential compressive strength, and surface characterization of additive manufactured hybrid blended magnetostrictive PLA composite. J Thermoplast Compos Mater 35(5):631–650. https://doi.org/10.1177/0892705720907651

    Article  CAS  Google Scholar 

  39. Kain S, Ecker JV, Haider A, Musso M, Petutschnigg A (2020) Effects of the infill pattern on mechanical properties of fused layer modeling (FLM) additive manufactured wood/polylactic acid (PLA) composites. Eur J Wood Wood Product 78:65–74. https://doi.org/10.1007/s00107-019-01473-0

    Article  CAS  Google Scholar 

  40. Babu K, Das O, Shanmugam V, Mensah RA, Försth M, Sas G, Restás Á, Berto F (2021) Fire behavior of additive manufactured polymeric composites. J Mater Eng Perform 30:4745–4755. https://doi.org/10.1007/s11665-021-05627-1

    Article  CAS  Google Scholar 

  41. Tuan Noraihan Azila Tuan Rahim, Abdullah AM, Akil HM (2019) Recent developments in fused deposition modeling-based 3D printing of polymers and their composites. Polym Rev 59(4):589–624. https://doi.org/10.1080/15583724.2019.1597883

    Article  CAS  Google Scholar 

  42. Mei H, Ali Z, Ali I, Cheng L (2019) Tailoring strength and modulus by 3D printing different continuous fibers and filled structures into composites. Adv Compos Hybrid Mater 2:312–319. https://doi.org/10.1007/s42114-019-00087-7

    Article  CAS  Google Scholar 

  43. He Q, Wang H, Fu K (2020) Lin Ye, additive manufactured continuous CF/PA6 composites: effect of microscopic voids on mechanical performance. Compos Sci Technol 191:108077. https://doi.org/10.1016/j.compscitech.2020.108077

    Article  CAS  Google Scholar 

  44. Balla VK, Kate KH, Satyavolu J, Singh P, Tadimeti JGD (2019) Additive manufacturing of natural fiber incorporated polymer composites: processing and prospects. Compos Part B: Eng 174:106956. https://doi.org/10.1016/j.compositesb.2019.106956

    Article  CAS  Google Scholar 

  45. Yueke Ming Y, Duan B, Wang H, Xiao X, Zhang, (2019) A novel route to fabricate high-performance additive manufactured continuous fiber-incorporated thermosetting polymer composites. Materials 12(9):1369–1381. https://doi.org/10.3390/ma12091369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang T-C, Yeh C-H (2020) Morphology and mechanical properties of additive manufacturedwood fiber/polylactic acid composite parts using fused deposition modeling (fdm), the effects of printing speed. Polymers 12(6):1334–1346. https://doi.org/10.3390/polym12061334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mansingh BB, Binoj JS, Tan ZQ, Eugene WWL, Amornsakchai T, Hassan SA, Goh KL (2022) Comprehensive characterization of raw and treated pineapple leaf fiber/PLA eco-friendly composites manufactured by 3D printing technique. Polym Compos. https://doi.org/10.1002/pc.26906

    Article  Google Scholar 

  48. Jing Qiao Y, Li L, Li (2019) Failure analysis of additive manufactured glass fiber/PA12 composite lattice structures using DIC. Additive Manuf 30:111192. https://doi.org/10.1016/j.compstruct.2019.111192

    Article  Google Scholar 

  49. Wang P, Zou B, Ding S, Huang C, Shi Z, Yao YMadP (2020) Preparation of short CF/GF incorporated PEEK composite filaments and their comprehensive properties evaluation for FDM-3D printing. Compos Part B: Eng 198:108175. https://doi.org/10.1016/j.compositesb.2020.108175

    Article  CAS  Google Scholar 

  50. Christophe Collet AA, Vaidya M, Gaugler M, West, Gareth, Lloyd-Jones (2022) Extrusion of PHA-containing bacterial biomass and the fate of endotoxins: a cost-reducing platform for applications in molding, coating and 3D printing. Mater Today Commun 33:104162. https://doi.org/10.1016/j.mtcomm.2022.104162

    Article  CAS  Google Scholar 

  51. Daniele Rigotti L, Fambri A, Pegoretti, (2022) Bio-composites for fused filament fabrication: effects of maleic anhydride grafting on poly(lactic acid) and microcellulose progress in additive manufacturing. Prog Addit Manuf. https://doi.org/10.1007/s40964-022-00264-z

    Article  Google Scholar 

  52. Harshul Thakkar S, Lawson AA, Rownaghi F, Rezaei (2018) Development of additive manufactured polymer-zeolite composite monoliths for gas separation. Chem Eng J 348:109–116. https://doi.org/10.1016/j.cej.2018.04.178

    Article  CAS  Google Scholar 

  53. El Moumen A, Tarfaoui M, Lafdi K (2019) Additive manufacturing of polymer composites: processing and modeling approaches. Compos Part B: Eng 171:166–182. https://doi.org/10.1016/j.compositesb.2019.04.029

    Article  CAS  Google Scholar 

  54. Zhang Y, Xu Y, Simon-Masseron A, Lalevée J (2021) Radical photoinitiation with LEDs and applications in the 3D printing of composites. Chem Soc Rev 50(6):3824–3841. https://doi.org/10.1039/D0CS01411G

    Article  CAS  PubMed  Google Scholar 

  55. Diego Bermudez PA, Quiñonez, Evelyn J, Vasquez IA, Carrete, Truman J, Word DA, Roberson (2021) Virtual and Physical Prototyping 16(2):178–195. https://doi.org/10.1080/17452759.2021.1910047

    Article  Google Scholar 

  56. Mansingh BB, Binoj JS, Hassan SA, Mariatti M, Siengchin S, Sanjay MR, Bharath KN (2021) Characterization of natural cellulosic fiber from cocos nucifera peduncle for sustainable biocomposites. J Nat Fibers. https://doi.org/10.1080/15440478.2021.1982827

    Article  Google Scholar 

  57. Qian Y, Li C, Qi Y (2021) Jing Zhong, 3D printing of graphene oxide composites with well controlled alignment. Carbon 171:777–784. https://doi.org/10.1016/j.carbon.2020.08.077

    Article  CAS  Google Scholar 

  58. Von Windheim N, Collinson DW, Lau. T, C BL, Gall K (2021) The influence of porosity, crystallinity and interlayer adhesion on the tensile strength of 3D printed polylactic acid (PLA). Rapid Prototyp J 27(7):1327–1336. https://doi.org/10.1108/RPJ-08-2020-0205

    Article  Google Scholar 

  59. Narlıoğlu N (2022) Comparison of mechanical properties of 3D-printed and compression-molded wood-polylactic acid (PLA) composites. Bio Resour 17(2):3291–3302

    Google Scholar 

  60. Hanan UA, Hassan SA, Wahit MU, Binoj JS, Mansingh BB, Goh KL (2022) Experimentation, optimization and predictive analysis of compressive behavior of montmorillonite nano-clay/unsaturated polyester composites. Polym Compos. https://doi.org/10.1002/pc.27041

    Article  Google Scholar 

  61. Samit C, Biswas MC (2020) 3D printing technology of polymer-fiber composites in textile and fashion industry: a potential roadmap of concept to consumer. Compos Struct 248:112562. https://doi.org/10.1016/j.compstruct.2020.112562

    Article  Google Scholar 

  62. Israel A, Carrete D, Bermudez C, Aguirre FA, Alvarez-Primo S, Anil-Kumar P, Chinolla M, Gamboa SA, Gonzalez HE, Heredia AM, Hernandez E, Levario JR, Lindquist VC, Luna, Luis M, Martinez VE, Mendez JJ, Roberson (2019) J Fail Anal Prev 19:418–430. https://doi.org/10.1007/s11668-019-00614-0

    Article  Google Scholar 

  63. Vyas C, Zhang J, Øvrebø Øystein, Huang B, Roberts I, Setty M, Allardyce B, Haugen H, Rajkhow R (2021) Paulo Bartolo, 3D printing of silk microparticle incorporated polycaprolactone scaffolds for tissue engineering applications. Mater Sci Engineering: C 118:111433. https://doi.org/10.1016/j.msec.2020.111433

    Article  CAS  Google Scholar 

  64. Zhanghao Hou X, Tian J, Zhang Z, Zheng Lu, Zhe D, Li AV, Malakhov, Alexander N, Polilov (2021) Optimization design and 3D printing of curvilinear fiber incorporated variable stiffness composites. Compos Sci Technol 201:108502. https://doi.org/10.1016/j.compscitech.2020.108502

    Article  CAS  Google Scholar 

  65. Krishnasamy Karthik JU, Prakash JS, Binoj BB, Mansingh (2022) Effect of stacking sequence and SiC nanoparticles on properties of carbon/glass/kevlar fiber incorporated hybrid polymer composites. Polym Compos. https://doi.org/10.1002/pc.26912

    Article  Google Scholar 

  66. Sanjita Wasti E, Triggs R, Farag M, Auad S, Adhikari D, Bajwa M, Li AJ, Ragauskas (2021) Influence of plasticizers on thermal and mechanical properties of biocomposite filaments made from lignin and polylactic acid for 3D printing. Compos Part B: Eng 205:108483. https://doi.org/10.1016/j.compositesb.2020.108483

    Article  CAS  Google Scholar 

Download references

Funding

No funding was provided for this research work.

Author information

Authors and Affiliations

Authors

Contributions

BBM: Investigation (Supporting); Writing - original draft of manuscript (Equal). JSB: Formal analysis (Equal); Investigation (supporting); Validation (lead); Writing - original draft of manuscript (Equal); Writing - review and editing (equal). ZQT: Conceptualization (Lead); Fabrication of Composite Materials in Singapore (Lead); Mechanical Characterization and Analysis of Composite Materials in Singapore (Lead); Writing - drafting early versions of progress report (Lead). WWLE: Conceptualization (Equal); Supervision (Equal); Writing - review and editing (Equal). TA: Materials Preparation in Thailand (Lead), Conceptualization (Equal). SAH: Supervision (supporting); Validation (supporting); Writing - review and editing (supporting). KLG: Supervision (Equal), Conceptualization (Equal).

Corresponding author

Correspondence to Joseph Selvi Binoj.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansingh, B.B., Binoj, J.S., Tan, Z.Q. et al. Characterization and Performance of Additive Manufactured Novel bio-waste Polylactic acid eco-friendly Composites. J Polym Environ 31, 2306–2320 (2023). https://doi.org/10.1007/s10924-023-02758-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02758-5

Keywords

Navigation