Skip to main content

Advertisement

Log in

PBAT/PBS Blends Membranes Filled with Nanocrystalline Cellulose for Heavy Metal Ion Separation

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The aim of this study was to cognise the impact of nanocrystalline cellulose (NCCs) during fabrication of biodegradable poly(butylene adipate-co-terephthalate) (PBAT)/ poly(butylene succinate) (PBS) blend membranes. Biobased NCCs with high crystalline structure were incorporated ranging from 0 to 3 wt%. The 2 wt% NCC-filled membrane displayed a distinct and well-assimilated polymeric membrane network. In addition, increasing the NCCs loadings have positive impact on membrane porosity and average pour-size. The thermal resistance of the clean membrane was greatly increased after 1 wt% NCC loading but decreased dramatically with 2 and 3 wt% NCC loadings. Additionally, the membrane containing 3wt% NCCs displayed the greatest mechanical properties for Young’s modulus (3.12 GPa), elongation at break (8.5%), and tensile strength (28.3 MPa). The continuous operation test at 0.1 MPa demonstrated that a 3 wt% NCC loaded membrane had maximum removal effectiveness for metal ions of chromium and manganese i.e. 96% and 93%, respectively. Therefore, a fully biodegradable NCCs-filled PBAT/PBS composite membranes have significant future potential for use in the treatment of wastewater streams containing heavy metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xia QC, Liu ML, Cao XL, Wang Y, Xing W, Sun SP (2018) Structure design and applications of dual-layer polymeric membranes. J Membrane Sci 562:85–111

    Article  CAS  Google Scholar 

  2. Karim Z, Claudpierre S, Grahn M, Oksman K, Mathew AP (2016) Nanocellulose based functional membranes for water cleaning: tailoring of mechanical properties, porosity and metal ion capture. J Membrane Sci 514:418–428

    Article  CAS  Google Scholar 

  3. Galiano F, Briceño K, Marino T, Molino A, Christensen KV, Figoli A (2018) Advances in biopolymer-based membrane preparation and applications. J Membrane Sci 564:562–586

    Article  CAS  Google Scholar 

  4. Bolisetty S, Peydayesh M, Mezzenga R (2019) Sustainable technologies for water purification from heavy metals: review and analysis. Chem Soc Rev 48:463–487

    Article  PubMed  CAS  Google Scholar 

  5. Pagno V, Módenes AN, Dragunski DC, Ferrari LDF, Caetano J, Guellis C, Gonçalves BC, Anjos EV, Pagno F, Martinelli V (2020) Heat treatment of polymeric PBAT/PCL membranes containing activated carbon from Brazil nutshell biomass obtained by electrospinning and applied in drug removal. J Environ Chem Eng 8(5):104159

    Article  CAS  Google Scholar 

  6. Sellami F, Senhadji OK, Marais S, Couvrat N, Fatyeyeva K (2019) Polymer inclusion membranes based on CTA/PBAT blend containing Aliquat 336 as extractant for removal of Cr(VI): Efficiency, stability and selectivity. React Funct Polym 139:120–132

    Article  CAS  Google Scholar 

  7. Madhu P, Sanjay MR, Khan A, Otaibi AA, Al-Zahrani SA, Pradeep S, Yogesha B, Boonyasopon P, Siengchin S (2020) Hybrid effect of PJFs/E-glass/carbon fabric reinforced hybrid epoxy composites for structural applications. J Nat Fibers 19:1–11

    Google Scholar 

  8. Raghunathan V, Dhilip JDJ, Subramanian G, Narasimhan H, Baskar C, Murugesan A, Khan A, Otaibi AA (2021) Influence of chemical treatment on the physico-mechanical characteristics of natural fibers extracted from the barks of Vachellia Farnesiana. J Nat Fibers. https://doi.org/10.1080/15440478.2021.1875353

    Article  Google Scholar 

  9. Zhong L, Ding Z, Li B, Zhang L (2012) Preparation and characterization of polysulfone/sulfonated polysulfone/cellulose nanofibers ternary blend membranes. BioResources 10(2):2936–2948

    Google Scholar 

  10. Bai H, Zhou Y, Zhang L (2015) Morphology and mechanical properties of a new nanocrystalline cellulose/ polysulfone composite membrane. Adv Polym Technol. https://doi.org/10.1002/adv.21471

    Article  Google Scholar 

  11. Asad M, Asiri AM, Anzum N, Monti S, Karim Z (2022) Chemo-enzymatic functionalized sustainable cellulosic membranes: impact of regional selectivity on ions capture and antifouling behaviour. Carbohy Mat 278:118937

    Article  CAS  Google Scholar 

  12. Karim Z, Georgouvelas D, Svedberg A, Monti S, Mathew AP (2022) Upscaled engineered functional microfibrillated cellulose flat sheet membranes for removing charged water pollutants. Sep Puri Technol 289:120745

    Article  CAS  Google Scholar 

  13. Karim Z, Monti S, Barcaro G, Svedberg A, Ansari MA (2020) Enhancing sieving of cellulose microfiber membranes via tuning of interlayer spacing. Environ Sci Nano 7:2941–2952

    Article  CAS  Google Scholar 

  14. Karim Z, Monti S (2021) Microscopic hybrid membranes made of cellulose-based materials tuned for removing ions from industrial effluents. ACS Appl Poly Sci 3:3733–3746

    CAS  Google Scholar 

  15. Karim Z, Mathew AP, Grahn M, Mouzon J, Oksman K (2014) Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohy Poly 112:668–676

    Article  CAS  Google Scholar 

  16. Kian LK, Jawaid M, Ariffin H, Thariq MTH, Karim Z (2019) Morphological, physico-chemical, and thermal properties of cellulose nanowhiskers from roselle fibers. Cellulose 26:6599–6613

    Article  CAS  Google Scholar 

  17. Borkotoky SS, Dhar P, Katiyar V (2018) Biodegradable poly (lactic acid)/cellulose nanocrystals (CNCs) composite microcellular foam: Effect of nanofillers on foam cellular morphology, thermal and wettability behavior. Int J Biol Macromol 106:433–446

    Article  PubMed  CAS  Google Scholar 

  18. Wang L, Ando M, Kubota M, Ishihara S, Hikima Y, Ohshima M, Sekiguchi T, Sato A, Yano H (2017) Effects of hydrophobic-modified cellulose nanofibers (CNFs) on cell morphology and mechanical properties of high void fraction polypropylene nanocomposite foams. Compos Part A 98:166–173

    Article  CAS  Google Scholar 

  19. Arjmandi R, Hassan A, Haafiz MKM, Zakaria Z, Islam MS (2016) Effect of hydrolysed cellulose nanowhiskers on properties of montmorillonite/polylactic acid nanocomposites. Int J Biol Macromol 82:998–1010

    Article  PubMed  CAS  Google Scholar 

  20. Sung SH, Chang Y, Han J (2017) Development of polylactic acid nanocomposite films reinforced with cellulose nanocrystals derived from coffee silverskin. Carbohydr Polym 169:495–503

    Article  PubMed  CAS  Google Scholar 

  21. Zuo J, Chung TS, O’Brien GS, Kosar W (2017) Hydrophobic/hydrophilic PVDF/Ultem (R) dual-layer hollow fiber membranes with enhanced mechanical properties for vacuum membrane distillation. J Membrane Sci 523:103–110

    Article  CAS  Google Scholar 

  22. Xiong Z, Zhong Y, Lin H, Liu F, Li T, Li J (2017) PDLA/PLLA ultrafiltration membrane with excellent permeability, rejection and fouling resistance via stereocomplexation. J Membrane Sci 533:103–111

    Article  CAS  Google Scholar 

  23. Ai J, Yang L, Liao G, Xia H, Xiao F (2018) Applications of graphene oxide blended poly(vinylidene fluoride) membranes for the treatment of organic matters and its membrane fouling investigation. Appl Surf Sci 455:502–512

    Article  CAS  Google Scholar 

  24. Xu Y, Li Z, Su K, Fan T, Cao L (2018) Mussel-inspired modification of PPS membrane to separate and remove the dyes from the wastewater. Chem Eng J 341:371–382

    Article  CAS  Google Scholar 

  25. Fan T, Li Z, Cheng B, Li J (2018) Preparation, characterization of PPS micro-porous membranes and their excellent performance in vacuum membrane distillation. J Membrane Sci 556:107–117

    Article  CAS  Google Scholar 

  26. Liu P, Oksman K, Mathew AP (2016) Surface adsorption and self-assembly of Cu(II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media. J Colloid Interf Sci 464:175–182

    Article  CAS  Google Scholar 

  27. Danso EA, Peraniemi S, Leiviska T, Bhatnagar A (2018) Synthesis of S-ligand tethered cellulose nanofibers for efficient removal of Pb(II) and Cd(II) ions from synthetic and industrial wastewater. Environ Pollut 242:1988–1997

    Article  PubMed  Google Scholar 

  28. Teow YH, Kam LM, Mohammad AW (2018) Synthesis of cellulose hydrogel for copper (II) ions adsorption. J Environ Chem Eng 6:4588–4597

    Article  CAS  Google Scholar 

  29. Liu C, Jin RN, Ouyang XK, Wang YG (2017) Adsorption behavior of carboxylated cellulose nanocrystal—polyethyleneimine composite for removal of Cr(VI) ions. Appl Surf Sci 408:77–87

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their gratitude to King Saud University (Riyadh, Saudi Arabia) for funding this research through Researchers Supporting Project number (RSP-2021/406).

Author information

Authors and Affiliations

Authors

Contributions

LKK: Investigation, Methodology, Writing - review & editing, Formal analysis. MJ: Conceptualization, Investigation, Methodology, Supervision, Writing - review & editing. MHM: Investigation, Methodology, Conceptualization, Writing - review & editing, Funding. Naheed Saba: Investigation, Writing - review & editing. HF: Investigation, Writing - review & editing. OA: Investigation, Writing - review & editing. ZK : Investigation, Writing - review & editing.

Corresponding author

Correspondence to Mohammad Jawaid.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kian, L.K., Jawaid, M., Mahmoud, M.H. et al. PBAT/PBS Blends Membranes Filled with Nanocrystalline Cellulose for Heavy Metal Ion Separation. J Polym Environ 30, 5263–5273 (2022). https://doi.org/10.1007/s10924-022-02590-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02590-3

Keywords

Navigation