Skip to main content
Log in

Removal of Organic and Inorganic Pollutants Using CSFe3O4@CeO2 Nanocatalyst via Adsorption–Reduction Catalysis: A Focused Analysis on Methylene Blue

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The synthesis of an efficient catalytic system with a safe catalysis approach has always been the concern of researchers to eradicate the problems arising due to the discharge of colored pollutants by industries in water bodies. Herein, we synthesized a magnetically separable nanocatalyst, CSFe3O4@CeO2, by co-precipitation of CeO2 on the surface of magnetic Fe3O4 nanoparticles embedded in a chitosan hydrogel matrix. The synthesized catalyst was characterized by different analyses viz. FTIR, XRD, SEM–EDX and TEM. The CSFe3O4@CeO2 exhibited enhanced catalytic activity due to the unique synergism of adsorption and catalytic reduction for the removal of pollutants, namely methylene blue (MB), congo red (CR), and potassium ferricyanide using NaBH4 as a reducing agent. Further investigations of catalytic efficiency of CSFe3O4@CeO2 were done with MB by varying the catalyst dose, concentrations of MB and NaBH4. The reduction mechanism of MB to LMB (Leucomethylene blue) was studied and explained through adsorption reduction synergism. The reduction rate of MB in all catalytic experiments was determined by pseudo first-order kinetics. The adsorption isotherm data was best fit to Langmuir isotherm model indicated monolayer adsorption of MB on catalyst surface. The reusability of the catalyst with change in catalytic efficiency were also calculated to determine its economic feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Benhadria N, Hachemaoui M, Zaoui F et al (2022) Catalytic reduction of methylene blue dye by copper oxide nanoparticles. J Clust Sci 33:249–260. https://doi.org/10.1007/s10876-020-01950-0

    Article  CAS  Google Scholar 

  2. Naz M, Rafiq A, Ikram M et al (2021) Elimination of dyes by catalytic reduction in the absence of light: a review. J Mater Sci 56:15572–15608. https://doi.org/10.1007/s10853-021-06279-1

    Article  CAS  Google Scholar 

  3. Malik MA, Alshehri AA, Abomuti MA et al (2021) Bioengineered matricaria recutita extract-assisted palladium nanoparticles for the congo red dye degradation and catalytic reduction of 4-nitrophenol to 4-aminophenol. Toxics 9:103. https://doi.org/10.3390/toxics9050103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Farokhi M, Parvareh A, Moraveji MK (2018) Performance of ceria/iron oxide nano-composites based on chitosan as an effective adsorbent for removal of Cr(VI) and Co(II) ions from aqueous systems. Environ Sci Pollut Res 25:27059–27073. https://doi.org/10.1007/s11356-018-2594-x

    Article  CAS  Google Scholar 

  5. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418. https://doi.org/10.1016/j.jenvman.2010.11.011

    Article  CAS  Google Scholar 

  6. Qasem NAA, Mohammed RH, Lawal DU (2021) Removal of heavy metal ions from wastewater: a comprehensive and critical review. NPJ Clean Water 4:36. https://doi.org/10.1038/s41545-021-00127-0

    Article  CAS  Google Scholar 

  7. Pantelidou NA, Theologides CP, Olympiou GG et al (2015) Catalytic removal of pharmaceutical compounds in water medium under an H2 stream over various metal-supported catalysts: a promising process. Desalin Water Treat 53:3363–3370. https://doi.org/10.1080/19443994.2014.933620

    Article  CAS  Google Scholar 

  8. Zeng X, Liu J, Zhao J (2018) Highly efficient degradation of pharmaceutical sludge by catalytic wet oxidation using CuO-CeO2/γ-Al2O3 as a catalyst. PLoS ONE 13:e0199520. https://doi.org/10.1371/journal.pone.0199520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bakhsh EM, Akhtar K, Fagieh TM et al (2021) Sodium alginate nanocomposite based efficient system for the removal of organic and inorganic pollutants from wastewater. Int J Biol Macromol 191:243–254. https://doi.org/10.1016/j.ijbiomac.2021.09.029

    Article  CAS  PubMed  Google Scholar 

  10. Culica ME, Chibac-Scutaru AL, Melinte V, Coseri S (2020) Cellulose acetate incorporating organically functionalized CeO2 NPs: efficient materials for UV filtering applications. Materials (Basel) 13:2955. https://doi.org/10.3390/ma13132955

    Article  CAS  PubMed Central  Google Scholar 

  11. Khan SA, Bakhsh EM, Asiri AM, Khan SB (2021) Chitosan coated NiAl layered double hydroxide microsphere templated zero-valent metal NPs for environmental remediation. J Clean Prod 285:124830. https://doi.org/10.1016/j.jclepro.2020.124830

    Article  CAS  Google Scholar 

  12. Tan KB, Vakili M, Horri BA et al (2015) Adsorption of dyes by nanomaterials: recent developments and adsorption mechanisms. Sep Purif Technol 150:229–242. https://doi.org/10.1016/j.seppur.2015.07.009

    Article  CAS  Google Scholar 

  13. Ali H, Khan E, Ilahi I (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem 2019:1–14. https://doi.org/10.1155/2019/6730305

    Article  CAS  Google Scholar 

  14. Khan S, Malik A (2014) Environmental and health effects of textile industry wastewater. Environmental deterioration and human health. Springer, Dordrecht, pp 55–71

    Chapter  Google Scholar 

  15. Ben SH, Chenari Bouket A, Pourhassan Z et al (2021) Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods. Appl Sci 11:6255. https://doi.org/10.3390/app11146255

    Article  CAS  Google Scholar 

  16. Levin RL, Degrange MA, Bruno GF et al (2004) Methylene blue reduces mortality and morbidity in vasoplegic patients after cardiac surgery. Ann Thorac Surg 77:496–499. https://doi.org/10.1016/S0003-4975(03)01510-8

    Article  PubMed  Google Scholar 

  17. Jana S, Ray J, Mondal B, Tripathy T (2019) Efficient and selective removal of cationic organic dyes from their aqueous solutions by a nanocomposite hydrogel, katira gum-cl-poly(acrylic acid-co-N, N-dimethylacrylamide)@bentonite. Appl Clay Sci 173:46–64. https://doi.org/10.1016/j.clay.2019.03.009

    Article  CAS  Google Scholar 

  18. Lafi R, Montasser I, Hafiane A (2019) Adsorption of congo red dye from aqueous solutions by prepared activated carbon with oxygen-containing functional groups and its regeneration. Adsorpt Sci Technol 37:160–181. https://doi.org/10.1177/0263617418819227

    Article  CAS  Google Scholar 

  19. Ozmen EY, Sezgin M, Yilmaz A, Yilmaz M (2008) Synthesis of β-cyclodextrin and starch based polymers for sorption of azo dyes from aqueous solutions. Bioresour Technol 99:526–531. https://doi.org/10.1016/j.biortech.2007.01.023

    Article  CAS  PubMed  Google Scholar 

  20. Omidi S, Kakanejadifard A (2018) Eco-friendly synthesis of graphene–chitosan composite hydrogel as efficient adsorbent for Congo red. RSC Adv 8:12179–12189. https://doi.org/10.1039/C8RA00510A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97:1061–1085. https://doi.org/10.1016/j.biortech.2005.05.001

    Article  CAS  PubMed  Google Scholar 

  22. Ogugbue CJ, Sawidis T (2011) Bioremediation and detoxification of synthetic wastewater containing triarylmethane dyes by aeromonas hydrophila isolated from industrial effluent. Biotechnol Res Int 2011:1–11. https://doi.org/10.4061/2011/967925

    Article  CAS  Google Scholar 

  23. Ismail M, Akhtar K, Khan MI et al (2019) Pollution, toxicity and carcinogenicity of organic dyes and their catalytic bio-remediation. Curr Pharm Des 25:3645–3663. https://doi.org/10.2174/1381612825666191021142026

    Article  CAS  PubMed  Google Scholar 

  24. Brillas E, Martínez-Huitle CA (2015) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl Catal B Environ 166–167:603–643. https://doi.org/10.1016/j.apcatb.2014.11.016

    Article  CAS  Google Scholar 

  25. Tsai H, Shaya J, Tesana S et al (2020) Visible-light driven photocatalytic degradation of pirimicarb by Pt-doped AgInS2 nanoparticles. Catalysts 10:857. https://doi.org/10.3390/catal10080857

    Article  CAS  Google Scholar 

  26. Vinotha Alex A, Chandrasekaran N, Mukherjee A (2020) Novel enzymatic synthesis of core/shell AgNP/AuNC bimetallic nanostructure and its catalytic applications. J Mol Liq 301:112463. https://doi.org/10.1016/j.molliq.2020.112463

    Article  CAS  Google Scholar 

  27. Xia Q, Fu S, Ren G et al (2016) Fabrication of Fe3O4 @Au hollow spheres with recyclable and efficient catalytic properties. New J Chem 40:818–824. https://doi.org/10.1039/C5NJ02436F

    Article  CAS  Google Scholar 

  28. Sharma S, Bhattacharya A (2017) Drinking water contamination and treatment techniques. Appl Water Sci 7:1043–1067. https://doi.org/10.1007/s13201-016-0455-7

    Article  CAS  Google Scholar 

  29. Yang Q, Wang Y, Wang J et al (2018) High effective adsorption/removal of illegal food dyes from contaminated aqueous solution by Zr-MOFs (UiO-67). Food Chem 254:241–248. https://doi.org/10.1016/j.foodchem.2018.02.011

    Article  CAS  PubMed  Google Scholar 

  30. Gupta VK, Mittal A, Gajbe V, Mittal J (2006) Removal and recovery of the hazardous azo dye acid orange 7 through adsorption over waste materials: bottom ash and de-oiled soya. Ind Eng Chem Res 45:1446–1453. https://doi.org/10.1021/ie051111f

    Article  CAS  Google Scholar 

  31. Sood S, Mehta SK, Umar A, Kansal SK (2014) The visible light-driven photocatalytic degradation of Alizarin red S using Bi-doped TiO2 nanoparticles. New J Chem 38:3127–3136. https://doi.org/10.1039/C4NJ00179F

    Article  CAS  Google Scholar 

  32. Soltani F, Navidjouy N, Rahimnejad M (2022) A review on bio-electro-Fenton systems as environmentally friendly methods for degradation of environmental organic pollutants in wastewater. RSC Adv 12:5184–5213. https://doi.org/10.1039/D1RA08825D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Madrakian T, Afkhami A, Ahmadi M (2013) Simple in situ functionalizing magnetite nanoparticles by reactive blue-19 and their application to the effective removal of Pb2+ ions from water samples. Chemosphere 90:542–547. https://doi.org/10.1016/j.chemosphere.2012.08.025

    Article  CAS  PubMed  Google Scholar 

  34. Amir M, Kurtan U, Baykal A (2015) Rapid color degradation of organic dyes by Fe3O4@His@Ag recyclable magnetic nanocatalyst. J Ind Eng Chem 27:347–353. https://doi.org/10.1016/j.jiec.2015.01.013

    Article  CAS  Google Scholar 

  35. Albukhari SM, Ismail M, Akhtar K, Danish EY (2019) Catalytic reduction of nitrophenols and dyes using silver nanoparticles @ cellulose polymer paper for the resolution of waste water treatment challenges. Colloids Surf A Physicochem Eng Asp 577:548–561. https://doi.org/10.1016/j.colsurfa.2019.05.058

    Article  CAS  Google Scholar 

  36. Nagarajan D, Venkatanarasimhan S (2019) Copper(II) oxide nanoparticles coated cellulose sponge: an effective heterogeneous catalyst for the reduction of toxic organic dyes. Environ Sci Pollut Res 26:22958–22970. https://doi.org/10.1007/s11356-019-05419-0

    Article  CAS  Google Scholar 

  37. Safavi A, Momeni S (2012) Highly efficient degradation of azo dyes by palladium/hydroxyapatite/Fe3O4 nanocatalyst. J Hazard Mater 201–202:125–131. https://doi.org/10.1016/j.jhazmat.2011.11.048

    Article  CAS  PubMed  Google Scholar 

  38. Zheng L-Q, Yu X-D, Xu J-J, Chen H-Y (2015) Reversible catalysis for the reaction between methyl orange and NaBH4 by silver nanoparticles. Chem Commun 51:1050–1053. https://doi.org/10.1039/C4CC07711C

    Article  CAS  Google Scholar 

  39. Gupta N, Singh HP, Sharma RK (2011) Metal nanoparticles with high catalytic activity in degradation of methyl orange: an electron relay effect. J Mol Catal A Chem 335:248–252. https://doi.org/10.1016/j.molcata.2010.12.001

    Article  CAS  Google Scholar 

  40. Ikram M, Umar E, Raza A et al (2020) Dye degradation performance, bactericidal behavior and molecular docking analysis of Cu-doped TiO2 nanoparticles. RSC Adv 10:24215–24233. https://doi.org/10.1039/D0RA04851H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rafiq A, Ikram M, Ali S et al (2021) Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. J Ind Eng Chem 97:111–128. https://doi.org/10.1016/j.jiec.2021.02.017

    Article  CAS  Google Scholar 

  42. Dontsova TA, Nahirniak SV, Astrelin IM (2019) Metaloxide nanomaterials and nanocomposites of ecological purpose. J Nanomater 2019:1–31. https://doi.org/10.1155/2019/5942194

    Article  CAS  Google Scholar 

  43. Kohantorabi M, Gholami MR (2017) Kinetic analysis of the reduction of 4-nitrophenol catalyzed by CeO2 nanorods-supported CuNi nanoparticles. Ind Eng Chem Res 56:1159–1167. https://doi.org/10.1021/acs.iecr.6b04208

    Article  CAS  Google Scholar 

  44. Rodríguez ARC, McCarthy JE, Alonso A et al (2018) Cerium oxide nanoparticles anchored onto graphene oxide for the removal of heavy metal ions dissolved in water. Desalin Water Treat 124:134–145. https://doi.org/10.5004/dwt.2018.22735

    Article  CAS  Google Scholar 

  45. Danish MSS, Bhattacharya A, Stepanova D et al (2020) A systematic review of metal oxide applications for energy and environmental sustainability. Metals (Basel) 10:1604. https://doi.org/10.3390/met10121604

    Article  CAS  Google Scholar 

  46. Moskvin M, Marková I, Malínská H et al (2020) Cerium oxide-decorated γ-Fe2O3 nanoparticles: design, synthesis and in vivo effects on parameters of oxidative stress. Front Chem. https://doi.org/10.3389/fchem.2020.00682

    Article  PubMed  PubMed Central  Google Scholar 

  47. Liu S, Yu B, Wang S et al (2020) Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles. Adv Colloid Interface Sci 281:102165. https://doi.org/10.1016/j.cis.2020.102165

    Article  CAS  PubMed  Google Scholar 

  48. An Z, Zhang W, Ma J et al (2021) Adsorption of azo dye on magnetically separable Fe3O4/CeO2 nanocomposite: kinetics, isotherm mechanism. Mater Sci. https://doi.org/10.5755/j02.ms.28019

    Article  Google Scholar 

  49. Corma A, Atienzar P, García H, Chane-Ching J-Y (2004) Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nat Mater 3:394–397. https://doi.org/10.1038/nmat1129

    Article  CAS  PubMed  Google Scholar 

  50. Cook LM (1990) Chemical processes in glass polishing. J Non Cryst Solids 120:152–171. https://doi.org/10.1016/0022-3093(90)90200-6

    Article  CAS  Google Scholar 

  51. Reed K, Cormack A, Kulkarni A et al (2014) Exploring the properties and applications of nanoceria: is there still plenty of room at the bottom? Environ Sci Nano 1:390–405. https://doi.org/10.1039/C4EN00079J

    Article  CAS  Google Scholar 

  52. Stambouli AB, Traversa E (2002) Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew Sustain Energy Rev 6:433–455. https://doi.org/10.1016/S1364-0321(02)00014-X

    Article  CAS  Google Scholar 

  53. Liu S, Yang Z, Chang Y et al (2018) An enzyme-free electrochemical biosensor combining target recycling with Fe3O4/CeO2@Au nanocatalysts for microRNA-21 detection. Biosens Bioelectron 119:170–175. https://doi.org/10.1016/j.bios.2018.08.006

    Article  CAS  PubMed  Google Scholar 

  54. Walkey C, Das S, Seal S et al (2015) Catalytic properties and biomedical applications of cerium oxide nanoparticles. Environ Sci Nano 2:33–53. https://doi.org/10.1039/C4EN00138A

    Article  CAS  PubMed  Google Scholar 

  55. Wang H, Zhong Y, Yu H et al (2019) High-efficiency adsorption for acid dyes over CeO2·xH2O synthesized by a facile method. J Alloys Compds 776:96–104. https://doi.org/10.1016/j.jallcom.2018.10.228

    Article  CAS  Google Scholar 

  56. Xu C, Qu X (2014) Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater 6:e90–e90. https://doi.org/10.1038/am.2013.88

    Article  CAS  Google Scholar 

  57. Das M, Patil S, Bhargava N et al (2007) Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials 28:1918–1925. https://doi.org/10.1016/j.biomaterials.2006.11.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang T (2020) Heterogeneous catalytic process for wastewater treatment. In: Bustillo-Lecompte C (ed) Advanced Oxidation Processes - Applications, Trends, and Prospects. IntechOpen, London

    Google Scholar 

  59. Azhar MR, Arafat Y, Zhong Y et al (2021) An adsorption-catalysis pathway toward sustainable application of mesoporous carbon nanospheres for efficient environmental remediation. ACS ES&T Water 1:145–156. https://doi.org/10.1021/acsestwater.0c00026

    Article  CAS  Google Scholar 

  60. Li N, Bai R (2005) A novel amine-shielded surface cross-linking of chitosan hydrogel beads for enhanced metal adsorption performance. Ind Eng Chem Res 44:6692–6700. https://doi.org/10.1021/ie050145k

    Article  CAS  Google Scholar 

  61. Singh N, Riyajuddin S, Ghosh K et al (2019) Chitosan-graphene oxide hydrogels with embedded magnetic iron oxide nanoparticles for dye removal. ACS Appl Nano Mater 2:7379–7392. https://doi.org/10.1021/acsanm.9b01909

    Article  CAS  Google Scholar 

  62. Kang S, Zhao Y, Wang W et al (2018) Removal of methylene blue from water with montmorillonite nanosheets/chitosan hydrogels as adsorbent. Appl Surf Sci 448:203–211. https://doi.org/10.1016/j.apsusc.2018.04.037

    Article  CAS  Google Scholar 

  63. Vidal RRL, Moraes JS (2019) Removal of organic pollutants from wastewater using chitosan: a literature review. Int J Environ Sci Technol 16:1741–1754. https://doi.org/10.1007/s13762-018-2061-8

    Article  CAS  Google Scholar 

  64. Gopinathan R, Bhowal A, Garlapati C (2019) Adsorption studies of some anionic dyes adsorbed by chitosan and new four-parameter adsorption isotherm model. J Chem Eng Data 64:2320–2328. https://doi.org/10.1021/acs.jced.8b01102

    Article  CAS  Google Scholar 

  65. Konwar A, Chowdhury D, Dan A (2019) Chitosan based in situ and ex situ magnetic iron oxide nanoparticles for rapid endotoxin removal from protein solutions. Mater Chem Front 3:716–725. https://doi.org/10.1039/C8QM00668G

    Article  CAS  Google Scholar 

  66. Garg U, Azim Y, Kar A, Pradeep CP (2020) Cocrystals/salt of 1-naphthaleneacetic acid and utilizing Hirshfeld surface calculations for acid–aminopyrimidine synthons. CrystEngComm 22:2978–2989. https://doi.org/10.1039/D0CE00106F

    Article  CAS  Google Scholar 

  67. Danish M, Muneer M (2021) Excellent visible-light-driven Ni-ZnS/g-C3N4 photocatalyst for enhanced pollutants degradation performance: Insight into the photocatalytic mechanism and adsorption isotherm. Appl Surf Sci 563:150262. https://doi.org/10.1016/j.apsusc.2021.150262

    Article  CAS  Google Scholar 

  68. Khan FU, Asimullah KSB et al (2017) Novel combination of zero-valent Cu and Ag nanoparticles @ cellulose acetate nanocomposite for the reduction of 4-nitro phenol. Int J Biol Macromol 102:868–877. https://doi.org/10.1016/j.ijbiomac.2017.04.062

    Article  CAS  PubMed  Google Scholar 

  69. Janoš P, Henych J, Pelant O et al (2016) Cerium oxide for the destruction of chemical warfare agents: a comparison of synthetic routes. J Hazard Mater 304:259–268. https://doi.org/10.1016/j.jhazmat.2015.10.069

    Article  CAS  PubMed  Google Scholar 

  70. Ai L, Zeng C, Wang Q (2011) One-step solvothermal synthesis of Ag-Fe3O4 composite as a magnetically recyclable catalyst for reduction of Rhodamine B. Catal Commun 14:68–73. https://doi.org/10.1016/j.catcom.2011.07.014

    Article  CAS  Google Scholar 

  71. Loh K-S, Lee Y, Musa A et al (2008) Use of Fe3O4 nanoparticles for enhancement of biosensor response to the herbicide 2,4-dichlorophenoxyacetic acid. Sensors 8:5775–5791. https://doi.org/10.3390/s8095775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sayyed SA, Beedri NI, Kadam VS, Pathan HM (2016) Rose bengal-sensitized nanocrystalline ceria photoanode for dye-sensitized solar cell application. Bull Mater Sci 39:1381–1387. https://doi.org/10.1007/s12034-016-1279-7

    Article  CAS  Google Scholar 

  73. Phung Hai TA, Sugimoto R (2018) Fluorescence control of chitin and chitosan fabricated via surface functionalization using direct oxidative polymerization. RSC Adv 8:7005–7013. https://doi.org/10.1039/C8RA00287H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Begum R, Najeeb J, Sattar A et al (2020) Chemical reduction of methylene blue in the presence of nanocatalysts: a critical review. Rev Chem Eng 36:749–770. https://doi.org/10.1515/revce-2018-0047

    Article  CAS  Google Scholar 

  75. Jia Z, Sun H, Du Z, Lei Z (2014) Catalytic bubble-free hydrogenation reduction of azo dye by porous membranes loaded with palladium nanoparticles. J Environ Sci 26:478–482. https://doi.org/10.1016/S1001-0742(13)60416-7

    Article  CAS  Google Scholar 

  76. Allen SJ, Mckay G, Porter JF (2004) Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. J Colloid Interface Sci 280:322–333. https://doi.org/10.1016/j.jcis.2004.08.078

    Article  CAS  PubMed  Google Scholar 

  77. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10. https://doi.org/10.1016/j.cej.2009.09.013

    Article  CAS  Google Scholar 

  78. Maruthapandi M, Kumar VB, Luong JHT, Gedanken A (2018) Kinetics, isotherm, and thermodynamic studies of methylene blue adsorption on polyaniline and polypyrrole macro-nanoparticles synthesized by C-dot-initiated polymerization. ACS Omega 3:7196–7203. https://doi.org/10.1021/acsomega.8b00478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Langmuir DA (2012) Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn 2+ unto phosphoric acid modified rice husk. IOSR J Appl Chem 3:38–45. https://doi.org/10.9790/5736-0313845

    Article  CAS  Google Scholar 

  80. Ayawei N, Ebelegi AN, Wankasi D (2017) Modelling and interpretation of adsorption isotherms. J Chem 2017:1–11. https://doi.org/10.1155/2017/3039817

    Article  CAS  Google Scholar 

  81. Pulido Melián E, Henríquez-Cárdenes E, González Díaz O, Doña Rodríguez JM (2016) Study of adsorption and degradation of dimethylphthalate on TiO2-based photocatalysts. Chem Phys 475:112–118. https://doi.org/10.1016/j.chemphys.2016.04.021

    Article  CAS  Google Scholar 

  82. Olivera S, Nataraj D, Archana S et al (2018) Alpha-cellulose derived from teakwood sawdust for cationic dyes removal. Mater Focus 7:132–139. https://doi.org/10.1166/mat.2018.1490

    Article  CAS  Google Scholar 

  83. Kiani Ghaleh sardi F, Behpour M, Ramezani Z, Masoum S (2021) Simultaneous removal of Basic Blue41 and Basic Red46 dyes in binary aqueous systems via activated carbon from palm bio-waste: Optimization by central composite design, equilibrium, kinetic, and thermodynamic studies. Environ Technol Innov 24:102039. https://doi.org/10.1016/j.eti.2021.102039

    Article  CAS  Google Scholar 

  84. Laoufi I, Saint-Lager M-C, Lazzari R et al (2011) Size and catalytic activity of supported gold nanoparticles: an in operando study during CO oxidation. J Phys Chem C 115:4673–4679. https://doi.org/10.1021/jp1110554

    Article  CAS  Google Scholar 

  85. Rauf MA, Meetani MA, Khaleel A, Ahmed A (2010) Photocatalytic degradation of Methylene Blue using a mixed catalyst and product analysis by LC/MS. Chem Eng J 157:373–378. https://doi.org/10.1016/j.cej.2009.11.017

    Article  CAS  Google Scholar 

  86. DAS PSATM and PP (2017) Highly efficient catalytic reductive degradation of various organic dyes by Au/CeO2-TiO2 nano-hybrid. J Chem Sci 1:81–93

    Google Scholar 

  87. Ucar A, Findik M, Gubbuk IH et al (2017) Catalytic degradation of organic dye using reduced graphene oxide–polyoxometalate nanocomposite. Mater Chem Phys 196:21–28. https://doi.org/10.1016/j.matchemphys.2017.04.047

    Article  CAS  Google Scholar 

  88. Ali F, Khan SB, Kamal T et al (2017) Chitosan coated cotton cloth supported zero-valent nanoparticles: simple but economically viable, efficient and easily retrievable catalysts. Sci Rep 7:16957. https://doi.org/10.1038/s41598-017-16815-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Banerjee S, Chattopadhyaya MC (2017) Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arab J Chem 10:S1629–S1638. https://doi.org/10.1016/j.arabjc.2013.06.005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Applied Chemistry, Aligarh Muslim University for providing research facilities. AA and KUK thanks UGC for Non-Net fellowship. UG is thankful to the CSIR-SRF (Grant No: 09/112(0633)/2019-EMR-I) for providing financial assistance.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser Azim.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Garg, U., Khan, K.U. et al. Removal of Organic and Inorganic Pollutants Using CSFe3O4@CeO2 Nanocatalyst via Adsorption–Reduction Catalysis: A Focused Analysis on Methylene Blue. J Polym Environ 30, 4435–4451 (2022). https://doi.org/10.1007/s10924-022-02522-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02522-1

Keywords

Navigation