Skip to main content

Removal of Methylene Blue from Wastewater Using a Ternary Composite Hydrogel System: Pullulan Polysaccharides Grafted with Polyacrylamide and Decorated with Graphene Oxide

Abstract

In this study, composite hydrogels were prepared by a simple synthetic technique to adsorb methylene blue from water. The hydrogel was composed of polyacrylamide (PAM) as the carrier, grafted with pullulan polysaccharide, and modified with graphene oxide. The morphology and properties of PUL/PAM/GO composites were characterized by Thermogravimetric Analysis (TGA), Fourier Transform Infrared (FTIR) spectroscopy, and Scanning Electron Microscopy (SEM). Then, the adsorption performance of PUL/PAM/GO hydrogel for MB was researched, including the dose, temperature, contact time, pH, adsorption isotherm, adsorption kinetics, and adsorption thermodynamics and swelling properties. The effects of various salts in real wastewater on adsorption were simulated. The removal rate of MB by PUL/PAM/GO was high-speed, and the sample can remove 83.2% of the dye in 140 min. The adsorption kinetics was more consistent with pseudo-second-order reaction, and the Langmuir model was suitable for describing the adsorption process. The maximum adsorption capacity was 438.7 mg g−1. Thermodynamic parameters covered the enthalpy changes (ΔH0), free energy (ΔG0), and entropy (ΔS0), which stated that adsorption by the PUL/PAM/GO hydrogels was exothermic and spontaneous.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Wang L, Zhang JP, Wang AQ (2011) Fast removal of methylene blue from aqueous solution by adsorption onto chitosan-g-poly (acrylic acid)/attapulgite composite. Desalination 266:33–39. doi:https://doi.org/10.1016/j.desal.2010.07.065

    CAS  Article  Google Scholar 

  2. Sponza DT (2006) Toxicity studies in a chemical dye production industry in Turkey. J Hazard Mater 138:438–447. doi:https://doi.org/10.1016/j.jhazmat.2006.05.120

    CAS  Article  PubMed  Google Scholar 

  3. Thakur S, Pandey S, Arotiba OA (2016) Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue. Carbohydr Polym 153:34–46. doi:https://doi.org/10.1016/j.carbpol.2016.06.104

    CAS  Article  PubMed  Google Scholar 

  4. Vargas AMM, Cazetta AL, Kunita MH, Silva TL, Almeida VC (2011) Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): study of adsorption isotherms and kinetic models. Chem Eng J 168:722–730. https://doi.org/10.1016/j.cej.2011.01.067

    CAS  Article  Google Scholar 

  5. Ren N, Zhou X, Guo W, Yang S (2013) A review on treatment methods of dye wastewater. J Chem Ind Eng (China) 64:84–94

    CAS  Google Scholar 

  6. Figueiredo JL, Pereira MFR, Freitas MMA, Orfao JJM (1999) Modification of the surface chemistry of activated carbons. Carbon 37:1379–1389. doi:https://doi.org/10.1016/s0008-6223(98)00333-9

    CAS  Article  Google Scholar 

  7. Busca G, Berardinelli S, Resini C, Arrighi L (2008) Technologies for the removal of phenol from fluid streams: a short review of recent developments. J Hazard Mater 160:265–288. https://doi.org/10.1016/j.jhazmat.2008.03.045

    CAS  Article  PubMed  Google Scholar 

  8. Ji XL, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8:500–506. doi:https://doi.org/10.1038/nmat2460

    CAS  Article  PubMed  Google Scholar 

  9. Lee JM, Kim MS, Hwang B, Bae W, Kim BW (2003) Photodegradation of acid red 114 dissolved using a photo-Fenton process with TiO2. Dyes Pigm 56:59–67. https://doi.org/10.1016/s0143-7208(02)00112-2

    CAS  Article  Google Scholar 

  10. Al-Momani F, Touraud E, Degorce-Dumas JR, Roussy J, Thomas O (2002) Biodegradability enhancement of textile dyes and textile wastewater by VUV photolysis. J Photochem Photobiol A 153:191–197. https://doi.org/10.1016/s1010-6030(02)00298-8

    CAS  Article  Google Scholar 

  11. Kapoor A, Viraraghavan T (1995) Fungal biosorption—an alternative treatment option for heavy metal bearing wastewaters: a  review. Bioresour Technol 53:195–206. https://doi.org/10.1016/0960-8524(95)00072-1

    CAS  Article  Google Scholar 

  12. Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291. doi:https://doi.org/10.1016/j.biotechadv.2008.02.002

    CAS  Article  PubMed  Google Scholar 

  13. Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70. doi:https://doi.org/10.1016/j.progpolymsci.2004.11.002

    CAS  Article  Google Scholar 

  14. Wang M, Li Y, Cui M, Li M, Xu W, Li L, Sun Y, Chen B, Chen K, Zhang Y (2022) Barium alginate as a skeleton coating graphene oxide and bentonite-derived composites: Excellent adsorbent based on predictive design for the enhanced adsorption of methylene blue. J Colloid Interface Sci 611:629–643

    CAS  Article  Google Scholar 

  15. Kesavan S, Meena KS, Dhakshinamoorthy R (2022) Bioactive polysaccharides based graphene oxide nanoparticle as a promising carrier for anticancer drug delivery. Biointerface Res Appl Chem 12:3429–3445. https://doi.org/10.33263/briac123.34293445

    CAS  Article  Google Scholar 

  16. He YX, Li Y, Sun YD, Zhao SJ, Feng M, Xu GM, Zhu HF, Ji PH, Mao HL, He YY, Gu ZW (2021) A double-network polysaccharide-based composite hydrogel for skin wound healing. Carbohydr Polym 261:117870. doi:https://doi.org/10.1016/j.carbpol.2021.117870

    CAS  Article  PubMed  Google Scholar 

  17. Peng JJ, Wang L, Wang MG, Du R, Qin SS, Jin CY, Wei YJ (2021) Yeast synthetic biology for the production of Lycium barbarum polysaccharides. Molecules 26:1641. https://doi.org/10.3390/molecules26061641

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Richards MR, Lowary TL (2009) Chemistry and biology of galactofuranose-containing polysaccharides. ChemBioChem 10:1920–1938. https://doi.org/10.1002/cbic.200900208

    CAS  Article  PubMed  Google Scholar 

  19. Franz G (1989) Polysaccharides in pharmacy: current applications and future concepts. Planta Med 55:493–497. doi:https://doi.org/10.1055/s-2006-962078

    CAS  Article  PubMed  Google Scholar 

  20. Mohamed SAA, El-Sakhawy M, El-Sakhawy MAM (2020) Polysaccharides, protein and lipid -based natural edible films in food packaging: a review. Carbohydr Polym 238:116178. https://doi.org/10.1016/j.carbpol.2020.116178

    CAS  Article  PubMed  Google Scholar 

  21. Lopez-Ortega MA, Chavarria-Hernandez N, Lopez-Cuellar MD, Rodriguez-Hernandez AI (2021) A review of extracellular polysaccharides from extreme niches: an emerging natural source for the biotechnology. From the adverse to diverse. Int J Biol Macromol 177:559–577. https://doi.org/10.1016/j.ijbiomac.2021.02.101

    CAS  Article  PubMed  Google Scholar 

  22. Zaitsev SY, Savina AA, Zaitsev IS (2019) Biochemical aspects of lipase immobilization at polysaccharides for biotechnology. Adv Colloid Interface Sci 272:102016. doi:https://doi.org/10.1016/j.cis.2019.102016

    CAS  Article  PubMed  Google Scholar 

  23. Gerente C, Lee VKC, Le Cloirec P, McKay G (2007) Application of chitosan for the removal of metals from wastewaters by adsorption—mechanisms and models review. Crit Rev Environ Sci Technol 37:41–127. https://doi.org/10.1080/10643380600729089

    CAS  Article  Google Scholar 

  24. Kloster GA, Mosiewicki MA, Marcovich NE (2019) Chitosan/iron oxide nanocomposite films: effect of the composition and preparation methods on the adsorption of congo red. Carbohydr Polym 221:186–194. https://doi.org/10.1016/j.carbpol.2019.05.089

    CAS  Article  PubMed  Google Scholar 

  25. Oosterveld A, Beldman G, Voragen AGJ (2000) Oxidative cross-linking of pectic polysaccharides from sugar beet pulp. Carbohydr Res 328:199–207. doi:https://doi.org/10.1016/s0008-6215(00)00096-3

    CAS  Article  PubMed  Google Scholar 

  26. Taga T (1996) Solubility of styrene/polysaccharide graft copolymers in the good solvents for trunk chain polysaccharide. Sen-I Gakkaishi 52:481–487. doi:https://doi.org/10.2115/fiber.52.9_481

    CAS  Article  Google Scholar 

  27. Zhu JM, Marchant RE (2011) Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Dev 8:607–626. doi:https://doi.org/10.1586/erd.11.27

    CAS  Article  Google Scholar 

  28. Annadurai G, Juang RS, Lee DJ (2002) Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J Hazard Mater 92:263–274. doi:https://doi.org/10.1016/s0304-3894(02)00017-1

    CAS  Article  PubMed  Google Scholar 

  29. Chen L, Li YH, Hu S, Sun JK, Du QJ, Yang XX, Ji Q, Wang ZH, Wang DC, Xia YZ (2016) Removal of methylene blue from water by cellulose/graphene oxide fibres. J Exp Nanosci 11:1156–1170. doi:https://doi.org/10.1080/17458080.2016.1198499

    CAS  Article  Google Scholar 

  30. Amrita AA, Sharma P, Katti DS (2015) Pullulan-based composite scaffolds for bone tissue engineering: Improved osteoconductivity by pore wall mineralization. Carbohydr Polym 123:180–189. doi:https://doi.org/10.1016/j.carbpol.2015.01.038

    CAS  Article  PubMed  Google Scholar 

  31. Chen L, Ren F, Zhang ZP, Tong QY, Rashed MMA (2015) Effect of pullulan on the short-term and long-term retrogradation of rice starch. Carbohydr Polym 115:415–421. doi:https://doi.org/10.1016/j.carbpol.2014.09.006

    CAS  Article  PubMed  Google Scholar 

  32. Singh RS, Kaur N, Kennedy JF (2019) Pullulan production from agro-industrial waste and its applications in food industry: a review. Carbohydr Polym 217:46–57. https://doi.org/10.1016/j.carbpol.2019.04.050

    CAS  Article  PubMed  Google Scholar 

  33. Li HY, Xue YH, Jia B, Bai Y, Zuo YY, Wang SG, Zhao YY, Yang WZ, Tang HB (2018) The preparation of hyaluronic acid grafted pullulan polymers and their use in the formation of novel biocompatible wound healing film. Carbohydr Polym 188:92–100. doi:https://doi.org/10.1016/j.carbpol.2018.01.102

    CAS  Article  PubMed  Google Scholar 

  34. Tao XJ, Xie YC, Zhang QF, Qiu XM, Yuan LM, Wen Y, Li M, Yang XP, Tao T, Xie MH, Lv YW, Wang QY, Feng X (2016) Cholesterol-modified amino-pullulan nanoparticles as a drug carrier: comparative study of cholesterol-modified carboxyethyl pullulan and pullulan nanoparticles. Nanomaterials 6:165. https://doi.org/10.3390/nano6090165

    CAS  Article  PubMed Central  Google Scholar 

  35. Li R, Tomasula P, de Sousa AMM, Liu SC, Tunick M, Liu K, Liu LS (2017) Electrospinning pullulan fibers from salt solutions. Polymers 9:32. https://doi.org/10.3390/polym9010032

    CAS  Article  PubMed Central  Google Scholar 

  36. Wang X, Zhang D, Wang J, Tang R, Wei B, Jiang Q (2017) Succinyl pullulan-crosslinked carboxymethyl chitosan sponges for potential wound dressing. Int J Polym Mater Polym Biomater 66:61–70. https://doi.org/10.1080/00914037.2016.1182912

    CAS  Article  Google Scholar 

  37. Ahmad SZN, Salleh WNW, Ismail AF, Yusof N, Yusop MZM, Aziz F (2020) Adsorptive removal of heavy metal ions using graphene-based nanomaterials: toxicity, roles of functional groups and mechanisms. Chemosphere 248:126008. https://doi.org/10.1016/j.chemosphere.2020.126008

    CAS  Article  PubMed  Google Scholar 

  38. He SF, Zhang F, Cheng SZ, Wang W (2016) Synthesis of sodium acrylate and acrylamide copolymer/go hydrogels and their effective adsorption for Pb2+ and Cd2+. ACS Sustain Chem Eng 4:3948–3959. https://doi.org/10.1021/acssuschemeng.6b00796

    CAS  Article  Google Scholar 

  39. Qi Y, Yang M, Xu W, He S, Men Y (2017) Natural polysaccharides-modified graphene oxide for adsorption of organic dyes from aqueous solutions. J Colloid Interface Sci 486:84–96. doi:https://doi.org/10.1016/j.jcis.2016.09.058

    CAS  Article  PubMed  Google Scholar 

  40. Richa, Choudhury AR (2019) Synthesis and rheological characterization of a novel thermostable quick setting composite hydrogel of gellan and pullulan. Int J Biol Macromol 125:979–988. doi:https://doi.org/10.1016/j.ijbiomac.2018.12.147

    CAS  Article  Google Scholar 

  41. Bang S, Ko Y-G, Kim WI, Cho D, Park WH, Kwon OH (2017) Preventing postoperative tissue adhesion using injectable carboxymethyl cellulose-pullulan hydrogels. Int J Biol Macromol 105:886–893. doi:https://doi.org/10.1016/j.ijbiomac.2017.07.103

    CAS  Article  PubMed  Google Scholar 

  42. Sonmez B, Celikkol AN (2021) Pullulan based hydrogels for the removal of various metal ions from aqueous solutions. J Environ Chem Eng 9:106118. doi:https://doi.org/10.1016/j.jece.2021.106188

    CAS  Article  Google Scholar 

  43. Karadag E, Saraydin D, Cetinkaya S, Guven O (1996) In vitro swelling studies and preliminary biocompatibility evaluation of acrylamide-based hydrogels. Biomaterials 17:67–70. doi:https://doi.org/10.1016/0142-9612(96)80757-5

    CAS  Article  PubMed  Google Scholar 

  44. Soni SR, Kumari N, Bhunia BK, Sarkar B, Mandal BB, Ghosh A (2018) Synthesis and characterization of a non-cytotoxic and biocompatible acrylamide grafted pullulan—application in pH responsive controlled drug delivery. Int J Biol Macromol 120:753–762. https://doi.org/10.1016/j.ijbiomac.2018.08.123

    CAS  Article  PubMed  Google Scholar 

  45. Ghimici L, Constantin M (2011) Novel thermosensitive flocculanting agent based on pullulan. J Hazard Mater 192:1009–1016. doi:https://doi.org/10.1016/j.jhazmat.2011.06.002

    CAS  Article  PubMed  Google Scholar 

  46. Hosseini H, Zirakjou A, McClements DJ, Goodarzi V, Chen WH (2022) Removal of methylene blue from wastewater using ternary nanocomposite aerogel systems: carboxymethyl cellulose grafted by polyacrylic acid and decorated with graphene oxide. J Hazard Mater 421:126752. https://doi.org/10.1016/j.jhazmat.2021.126752

    CAS  Article  PubMed  Google Scholar 

  47. Zhou D, Wang L, Chen X, Wei X, Liang J, Tang R, Xu Y (2020) Reaction mechanism investigation on the esterification of rosin with glycerol over annealed Fe3O4/MOF-5 via kinetics and TGA-FTIR analysis. Chem Eng J 401:126024. https://doi.org/10.1016/j.cej.2020.126024

    CAS  Article  Google Scholar 

  48. Bedoui A, Souissi-Najar S, Idris SS, Abd Rahman N, Ouederni A (2021) Thermal behaviour of impregnated olive stones with phosphoric acid via TGA-MS. Comptes Rendus Chim 24:149–162. https://doi.org/10.5802/crchim.118

    CAS  Article  Google Scholar 

  49. Korbahti BK (2007) Response surface optimization of electrochemical treatment of textile dye wastewater. J Hazard Mater 145:277–286. doi:https://doi.org/10.1016/j.jhazmat.2006.11.031

    CAS  Article  PubMed  Google Scholar 

  50. Chen B, Li YH, Li MX, Cui MF, Xu WS, Li LB, Sun YH, Wang MZ, Zhang Y, Chen KW (2021) Rapid adsorption of tetracycline in aqueous solution by using MOF-525/graphene oxide composite. Microporous Mesoporous Mater 328:111457. doi:https://doi.org/10.1016/j.micromeso.2021.111457

    CAS  Article  Google Scholar 

  51. Yagub MT, Sen TK, Ang M (2014) Removal of cationic dye methylene blue (MB) from aqueous solution by ground raw and base modified pine cone powder. Environ Earth Sci 71:1507–1519. doi:https://doi.org/10.1007/s12665-013-2555-0

    CAS  Article  Google Scholar 

  52. Zou XQ, Zhang H, Chen T, Li HT, Meng CH, Xia Y, Guo J (2019) Preparation and characterization of polyacrylamide/sodium alginate microspheres and its adsorption of MB dye. Colloids Surf A 567:184–192. https://doi.org/10.1016/j.colsurfa.2018.12.019

    CAS  Article  Google Scholar 

  53. Agnihotri S, Singhal R (2019) Effect of sodium alginate content in acrylic acid/sodium humate/sodium alginate superabsorbent hydrogel on removal capacity of MB and CV dye by adsorption. J Polym Environ 27:372–385. https://doi.org/10.1007/s10924-018-1349-6

    CAS  Article  Google Scholar 

  54. Mathivanan M, Rahman SSA, Vedachalam R, Kumar ASP, Sabareesh G, Karuppiah S (2021) Ipomoea carnea: a novel biosorbent for the removal of methylene blue (MB) from aqueous dye solution: kinetic, equilibrium and statistical approach. Int J Phytoremediat 23:982–1000. https://doi.org/10.1080/15226514.2020.1871322

    CAS  Article  Google Scholar 

  55. Li D, Hua T, Yuan JR, Xu FG (2021) Methylene blue adsorption from an aqueous solution by a magnetic graphene oxide/humic acid composite. Colloids Surf A 627:1108–1118. https://doi.org/10.1016/j.colsurfa.2021.127171

    CAS  Article  Google Scholar 

  56. Rabipour M, Pour ZS, Sahraei R, Ghaemy M, Jazi ME, Mlsna TE (2020) pH-sensitive nanocomposite hydrogels based on poly(vinyl alcohol) macromonomer and graphene oxide for removal of cationic dyes from aqueous solutions. J Polym Environ 28:584–597. https://doi.org/10.1007/s10924-019-01625-6

    CAS  Article  Google Scholar 

  57. Viana MM, do Amparo SZS, Lima MCFS, Lopes RCFG, Vasconcelos CKB, Caliman V, Silva GG (2020) Microwave-assisted synthesis of polyacrylamide-aminated graphene oxide hybrid hydrogel with improved adsorption properties. J Environ Chem Eng 8:104415. doi:https://doi.org/10.1016/j.jece.2020.104415

    CAS  Article  Google Scholar 

  58. Al-Wasidi AS, Abouelreash YG, AlReshaidan S, Naglah AM (2022) Application of novel modified chitosan hydrogel composite for the efficient removal of eriochrome black T and methylene blue dyes from aqueous media. J Inorg Organomet Polym Mater 32:1142–1158. https://doi.org/10.1007/s10904-021-02168-x

    CAS  Article  Google Scholar 

  59. Wang YQ, Pan J, Li YH, Zhang PF, Li MX, Zheng H, Zhang XP, Li H, Du QJ (2020) Methylene blue adsorption by activated carbon, nickel alginate/activated carbon aerogel, and nickel alginate/graphene oxide aerogel: a comparison study. J Mater Res Technol 9:12443–12460. https://doi.org/10.1016/j.jmrt.2020.08.084

    CAS  Article  Google Scholar 

  60. Cui MF, Li YH, Sun Y, Wang HM, Li MX, Li LB, Xu WS (2021) Study on adsorption performance of MgO/calcium alginate composite for Congo red in wastewater. J Polym Environ 29:3977–3987. https://doi.org/10.1007/s10924-021-02170-x

    CAS  Article  Google Scholar 

  61. Li YH, Du QJ, Liu TH, Qi Y, Zhang P, Wang ZH, Xia YZ (2011) Preparation of activated carbon from Enteromorpha prolifera and its use on cationic red X-GRL removal. Appl Surf Sci 257:10621–10627. https://doi.org/10.1016/j.apsusc.2011.07.060

    CAS  Article  Google Scholar 

  62. Saber-Samandari S, Gulcan HO, Saber-Samandari S, Gazi M (2014) Efficient removal of anionic and cationic dyes from an aqueous solution using pullulan-graft-polyacrylamide porous hydrogel. Water Air Soil Pollut 225:2177. https://doi.org/10.1007/s11270-014-2177-5

    CAS  Article  Google Scholar 

  63. Kumar K, Kaith BS, Jindal R, Mittal H (2012) Gamma-radiation initiated synthesis of psyllium and acrylic acid-based polymeric networks for selective absorption of water from different oil-water emulsions. J Appl Polym Sci 124:4969–4977. https://doi.org/10.1002/app.35605

    CAS  Article  Google Scholar 

  64. Singh R, Pal D, Mathur A, Singh A, Krishnan MA, Chattopadhyay S (2019) An efficient pH sensitive hydrogel, with biocompatibility and high reusability for removal of methylene blue dye from aqueous solution. React Funct Polym 144:104346. doi:https://doi.org/10.1016/j.reactfunctpolym.2019.104346

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [51672140]; and Taishan Scholar Program of Shandong Province [201511029].

Author information

Authors and Affiliations

Authors

Contributions

KC: conceptualization, methodology, writing—original draft, writing—review & editing. YL: supervision, funding acquisition. MC: conceptualization, visualization. WX: resources. LL: data curation. MW: validation. BC and YS: formal analysis. YZ: project administration.

Corresponding author

Correspondence to Yanhui Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Li, Y., Wang, M. et al. Removal of Methylene Blue from Wastewater Using a Ternary Composite Hydrogel System: Pullulan Polysaccharides Grafted with Polyacrylamide and Decorated with Graphene Oxide. J Polym Environ (2022). https://doi.org/10.1007/s10924-022-02506-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-022-02506-1

Keywords

  • Pullulan
  • Graphite oxide
  • Hydrogels
  • Adsorption
  • Methylene blue