Millward AR, Yaghi OM (2005) Metal−organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999
CAS
PubMed
Article
Google Scholar
Simmons JM, Wu H, Zhou W, Yildirim T (2011) Carbon capture in metal–organic frameworks—a comparative study. Energy Environ Sci 4:2177–2185
CAS
Article
Google Scholar
Chung YG, Gómez-Gualdrón DA, Li P, Leperi KT, Deria P, Zhang H, Vermeulen NA, Stoddart JF, You F, Hupp JT (2016) In silico discovery of metal-organic frameworks for precombustion CO2 capture using a genetic algorithm. Sci Ad 2:e1600909
Article
CAS
Google Scholar
Maurya M, Singh JK (2019) Effect of ionic liquid impregnation in highly water-stable metal-organic frameworks, covalent organic frameworks, and carbon-based adsorbents for post-combustion flue gas treatment. Energy Fuels 33:3421–3428
CAS
Article
Google Scholar
Furukawa S, Reboul J, Diring S, Sumida K, Kitagawa S (2014) Structuring of metal–organic frameworks at the mesoscopic/macroscopic scale. Chem Soc Rev 43:5700–5734
CAS
PubMed
Article
Google Scholar
Chen Y, Wu J, Xiao J, Xi H, Xia Q, Li Z (2017) A new MOF-505@GO composite with high selectivity for CO2/CH4 and CO2/N2 separation. Chem Eng J 308:1065–1072
CAS
Article
Google Scholar
Prasanth KP, Rallapalli P, Raj MC, Bajaj HC, Jasra RV (2011) Enhanced hydrogen sorption in single walled carbon nanotube incorporated MIL-101 composite metal–organic framework. Int J Hydrogen Energy 36:7594–7601
CAS
Article
Google Scholar
Ameloot R, Liekens A, Alaerts L, Maes M, Galarneau A, Coq B, Desmet G, Sels BF, Denayer JFM, De Vos DE (2010) Silica–MOF composites as a stationary phase in liquid chromatography. Eur J Inorg Chem 2010:3735–3738
Article
CAS
Google Scholar
Somayajulu Rallapalli PB, Raj MC, Patil DV, Prasanth KP, Somani RS, Bajaj HC (2013) Activated carbon@ MIL-101 (Cr): a potential metal-organic framework composite material for hydrogen storage. Int J Energy Res 37:746–753
CAS
Article
Google Scholar
Hachemaoui M, Mokhtar A, Abdelkrim S, Ouargli-Saker R, Zaoui F, Hamacha R, Zahmani H, Hacini S, Bengueddach A, Boukoussa B (2021) Improved catalytic activity of composite beads calcium Alginate@ MIL-101@ Fe3O4 towards reduction toxic organic dyes. J Polym Environ 29:3813–3826
CAS
Article
Google Scholar
Kaur K, Jindal R, Tanwar R (2019) Chitosan–gelatin@ tin (IV) tungstatophosphate nanocomposite ion exchanger: synthesis, characterization and applications in environmental remediation. J Polym Environ 27:19–36
CAS
Article
Google Scholar
Zhu L, Zong L, Wu X, Li M, Wang H, You J, Li C (2018) Shapeable fibrous aerogels of metal–organic-frameworks templated with nanocellulose for rapid and large-capacity adsorption. ACS Nano 12:4462–4468
CAS
PubMed
Article
Google Scholar
Ren W, Gao J, Lei C, Xie Y, Cai Y, Ni Q, Yao J (2018) Recyclable metal-organic framework/cellulose aerogels for activating peroxymonosulfate to degrade organic pollutants. Chem Eng J 349:766–774
CAS
Article
Google Scholar
Zhang XF, Feng Y, Wang Z, Jia M, Yao J (2018) Fabrication of cellulose nanofibrils/UiO-66-NH2 composite membrane for CO2/N2 separation. J Membr Sci 568:10–16
CAS
Article
Google Scholar
Lei C, Gao J, Ren W, Xie Y, Abdalkarim SYH, Wang S, Ni Q, Yao J (2019) Fabrication of metal-organic frameworks@ cellulose aerogels composite materials for removal of heavy metal ions in water. Carbohydr Polym 205:35–41
CAS
PubMed
Article
Google Scholar
Sun L, Shen J, An X, Qian X (2021) Fire retardant, UV and blue light double-blocking super clear Carboxymethylated cellulose bioplastics enabled by metal organic framework. Carbohydr Polym 273:118535
CAS
PubMed
Article
Google Scholar
Duan C, Meng J, Wang X, Meng X, Sun X, Xu Y, Zhao W, Ni Y (2018) Synthesis of novel cellulose-based antibacterial composites of Ag nanoparticles@ metal-organic frameworks@ carboxymethylated fibers. Carbohydr polym 193:82–88
CAS
PubMed
Article
Google Scholar
Ma X, Lou Y, Chen XB, Shi Z, Xu Y (2019) Multifunctional flexible composite aerogels constructed through in-situ growth of metal-organic framework nanoparticles on bacterial cellulose. Chem Eng J 356:227–235
CAS
Article
Google Scholar
Qian L, Lei D, Duan X, Zhang S, Song W, Hou C, Tang R (2018) Design and preparation of metal-organic framework papers with enhanced mechanical properties and good antibacterial capacity. Carbohydr polym 192:44–51
CAS
PubMed
Article
Google Scholar
Liu Q, Yu H, Zeng F, Li X, Sun J, Li C, Lin H, Su Z (2021) HKUST-1 modified ultrastability cellulose/chitosan composite aerogel for highly efficient removal of methylene blue. Carbohydr polym 255:117402
CAS
PubMed
Article
Google Scholar
Lu W, Duan C, Liu C, Zhang Y, Meng X, Dai L, Wang W, Yu H, Ni Y (2020) A self-cleaning and photocatalytic cellulose-fiber-supported “Ag@ AgCl@ MOF-cloth’’membrane for complex wastewater remediation. Carbohydr Polym 247:116691
CAS
PubMed
Article
Google Scholar
Nie J, Xie H, Zhang M, Liang J, Nie S, Han W (2020) Effective and facile fabrication of MOFs/cellulose composite paper for air hazards removal by virtue of in situ synthesis of MOFs/chitosan hydrogel. Carbohydr polym 250:116955
CAS
PubMed
Article
Google Scholar
Abdelhameed RM, Rehan M, Emam HE (2018) Figuration of Zr-based MOF@ cotton fabric composite for potential kidney application. Carbohydr polym 195:460–467
CAS
PubMed
Article
Google Scholar
Javanbakht S, Pooresmaeil M, Namazi H (2019) Green one-pot synthesis of carboxymethylcellulose/Zn-based metal-organic framework/graphene oxide bio-nanocomposite as a nanocarrier for drug delivery system. Carbohydr polym 208:294–301
CAS
PubMed
Article
Google Scholar
Abdelhamid HN, Mathew AP (2022) Cellulose–metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted applications: a review. Coord Chem Rev 451:214263
CAS
Article
Google Scholar
Abdelhamid HN, Mathew AP (2021) Cellulose-zeolitic imidazolate frameworks (CelloZIFs) for multifunctional environmental remediation: Adsorption and catalytic degradation. Chem Eng J 426:131733
Article
CAS
Google Scholar
Jia M, Zhang XF, Feng Y, Zhou Y, Yao J (2020) In-situ growing ZIF-8 on cellulose nanofibers to form gas separation membrane for CO2 separation. J Membr Sci 595:117579
CAS
Article
Google Scholar
Policicchio A, Florent M, Attia MF, Whitehead DC, Jagiello J, Bandosz TJ (2020) Effect of the incorporation of functionalized cellulose nanocrystals into UiO-66 on composite porosity and surface heterogeneity alterations. Adv Mater Interfaces 7:1902098
CAS
Article
Google Scholar
Mubashir M, Dumée LF, Fong YY, Jusoh N, Lukose J, Chai WS, Show PL (2021) Cellulose acetate-based membranes by interfacial engineering and integration of ZIF-62 glass nanoparticles for CO2 separation. J Hazard Mater 415:125639
CAS
PubMed
Article
Google Scholar
Raza A, Japip S, Liang CZ, Farrukh S, Hussain A, Chung TS (2021) Novel cellulose triacetate (CTA)/cellulose diacetate (CDA) blend membranes enhanced by amine functionalized ZIF-8 for CO2 separation. Polymers 13(17):2946
CAS
PubMed
PubMed Central
Article
Google Scholar
Ma H, Wang Z, Zhang XF, Ding M, Yao J (2021) In situ growth of amino-functionalized ZIF-8 on bacterial cellulose foams for enhanced CO2 adsorption. Carbohydr Polym 270:118376
CAS
PubMed
Article
Google Scholar
Wang S, Wang C, Zhou Q (2021) Strong foam-like composites from highly mesoporous wood and metal-organic frameworks for efficient CO2 capture. ACS Appl Mater Interfaces 13:29949–29959
CAS
PubMed Central
Article
Google Scholar
Al-Janabi N, Hill P, Torrente-Murciano L, Garforth A, Gorgojo P, Siperstein F, Fan X (2015) Mapping the Cu-BTC metal–organic framework (HKUST-1) stability envelope in the presence of water vapour for CO2 adsorption from flue gases. Chem Eng J 281:669–677
CAS
Article
Google Scholar
Van Assche TR, Duerinck T, Van der Perre S, Baron GV, Denayer JF (2014) Prediction of molecular separation of polar–apolar mixtures on heterogeneous metal–organic frameworks: HKUST-1. Langmuir 30:7878–7883
PubMed
Article
CAS
Google Scholar
Ongari D, Tiana D, Stoneburner SJ, Gagliardi L, Smit B (2017) Origin of the strong interaction between polar molecules and copper (II) paddle-wheels in metal organic frameworks. J Phys Chem 121:15135–15144
CAS
Google Scholar
Chowdhury P, Mekala S, Dreisbach F, Gumma S (2012) Adsorption of CO, CO2 and CH4 on Cu-BTC and MIL-101 metal organic frameworks: Effect of open metal sites and adsorbate polarity. Microporous Mesoporous Mater 152:246–252
CAS
Article
Google Scholar
Liang Z, Marshall M, Chaffee AL (2009) CO2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X). Energy Fuels 23:2785–2789
CAS
Article
Google Scholar
Lange LE, Obendorf SK (2015) Functionalization of cotton fiber by partial etherification and self-assembly of polyoxometalate encapsulated in Cu3(BTC)2 metal–organic framework. ACS Appl Mater Interfaces 7:3974–3980
CAS
PubMed
Article
Google Scholar
Wang JY, Mangano E, Brandani S, Ruthven DM (2021) A review of common practices in gravimetric and volumetric adsorption kinetic experiments. Adsorption 27:295–318
CAS
Article
Google Scholar
Tomé LC, Freire MG, Rebelo LPN, Silvestre AJ, Neto CP, Marrucho IM, Freire CS (2011) Surface hydrophobization of bacterial and vegetable cellulose fibers using ionic liquids as solvent media and catalysts. Green Chem 13:2464–2470
Article
CAS
Google Scholar
Wada M, Okano T, Sugiyama J (2001) Allomorphs of native crystalline cellulose I evaluated by two equatorial d-spacings. J Wood Sci 47:124–128
CAS
Article
Google Scholar
Schlichte K, Kratzke T, Kaskel S (2004) Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous Mesoporous Mater 73:81–88
CAS
Article
Google Scholar
Kondor A, Santmarti A, Mautner A, Williams D, Bismarck A, Lee KY (2021) On the BET surface area of nanocellulose determined using volumetric, gravimetric and chromatographic adsorption methods. Front Chem Eng 3:738995
Article
Google Scholar
Oshima T, Taguchi S, Ohe K, Baba Y (2011) Phosphorylated bacterial cellulose for adsorption of proteins. Carbohydr Polym 83:953–958
CAS
Article
Google Scholar
Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KS (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069
CAS
Article
Google Scholar
Wang QM, Shen D, Bülow M, Lau ML, Deng S, Fitch FR, Lemcoff NO, Semanscin J (2002) Metallo-organic molecular sieve for gas separation and purification. Microporous Mesoporous Mater 55:217–230
CAS
Article
Google Scholar
Yan TK, Nagai A, Michida W, Kusakabe K, Yusup S (2016) Crystal growth of cyclodextrin-based metal-organic framework for carbon dioxide capture and separation. Proc Eng 148:30–34
CAS
Article
Google Scholar
Valencia L, Abdelhamid HN (2019) Nanocellulose leaf-like zeolitic imidazolate framework (ZIF-L) foams for selective capture of carbon dioxide. Carbohydr polym 213:338–345
CAS
PubMed
Article
Google Scholar
Wang J, Guo X (2020) Adsorption kinetic models: physical meanings, applications, and solving methods. J Hazard Mater 390:122156
CAS
PubMed
Article
Google Scholar
Mathias PM, Kumar R, Moyer JD, Schork JM, Srinivasan SR, Auvil SR, Talu O (1996) Correlation of multicomponent gas adsorption by the dual-site Langmuir model. Application to nitrogen/oxygen adsorption on 5A-zeolite. Ind Eng Chem Res 35:2477–2483
CAS
Article
Google Scholar
Ko YG, Shin SS, Choi US (2011) Primary, secondary, and tertiary amines for CO2 capture: designing for mesoporous CO2 adsorbents. J Colloid Interface Sci 361:594–602
CAS
PubMed
Article
Google Scholar