Skip to main content

Advertisement

Log in

Cellulose-Based Hybrid Composites Enabled by Metal Organic Frameworks for CO2 Capture: The Effect of Cellulosic Substrate

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A comparative study of two cellulosic materials i.e., cotton fabrics and bacterial cellulose nanofibers (NBC), is reported as substrates for metal organic frameworks (MOF-199), to prepare micro and nanocomposites of cellulose@MOF-199 for CO2 capture. The CO2 uptake performance was investigated using gravimetric adsorption and desorption kinetics. NBC was an efficient substrate with full coverage and uniform distribution of MOF crystals observed in NBC@MOF-199 nanocomposite. The surface area for NBC@MOF-199 and Cotton@MOF-199 were 553.4 m2 g−1 and 168.9 m2 g−1, respectively. NBC@MOF-199 showed a high adsorption capacity (2.9 mmol g−1) at ambient temperature and pressure, followed by Cotton@MOF-199 (1.2 mmol g−1). The kinetic studies revealed that the adsorption process is controlled by film diffusion at lower temperatures, and by sorption to active sites at higher temperatures. The estimated thermodynamic parameters represent a spontaneous adsorption with low activation energies of adsorption/desorption, promising a fast adsorption and facilitated regeneration adsorbent system with minimum energy costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Millward AR, Yaghi OM (2005) Metal−organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999

    Article  CAS  PubMed  Google Scholar 

  2. Simmons JM, Wu H, Zhou W, Yildirim T (2011) Carbon capture in metal–organic frameworks—a comparative study. Energy Environ Sci 4:2177–2185

    Article  CAS  Google Scholar 

  3. Chung YG, Gómez-Gualdrón DA, Li P, Leperi KT, Deria P, Zhang H, Vermeulen NA, Stoddart JF, You F, Hupp JT (2016) In silico discovery of metal-organic frameworks for precombustion CO2 capture using a genetic algorithm. Sci Ad 2:e1600909

    Article  Google Scholar 

  4. Maurya M, Singh JK (2019) Effect of ionic liquid impregnation in highly water-stable metal-organic frameworks, covalent organic frameworks, and carbon-based adsorbents for post-combustion flue gas treatment. Energy Fuels 33:3421–3428

    Article  CAS  Google Scholar 

  5. Furukawa S, Reboul J, Diring S, Sumida K, Kitagawa S (2014) Structuring of metal–organic frameworks at the mesoscopic/macroscopic scale. Chem Soc Rev 43:5700–5734

    Article  CAS  PubMed  Google Scholar 

  6. Chen Y, Wu J, Xiao J, Xi H, Xia Q, Li Z (2017) A new MOF-505@GO composite with high selectivity for CO2/CH4 and CO2/N2 separation. Chem Eng J 308:1065–1072

    Article  CAS  Google Scholar 

  7. Prasanth KP, Rallapalli P, Raj MC, Bajaj HC, Jasra RV (2011) Enhanced hydrogen sorption in single walled carbon nanotube incorporated MIL-101 composite metal–organic framework. Int J Hydrogen Energy 36:7594–7601

    Article  CAS  Google Scholar 

  8. Ameloot R, Liekens A, Alaerts L, Maes M, Galarneau A, Coq B, Desmet G, Sels BF, Denayer JFM, De Vos DE (2010) Silica–MOF composites as a stationary phase in liquid chromatography. Eur J Inorg Chem 2010:3735–3738

    Article  Google Scholar 

  9. Somayajulu Rallapalli PB, Raj MC, Patil DV, Prasanth KP, Somani RS, Bajaj HC (2013) Activated carbon@ MIL-101 (Cr): a potential metal-organic framework composite material for hydrogen storage. Int J Energy Res 37:746–753

    Article  CAS  Google Scholar 

  10. Hachemaoui M, Mokhtar A, Abdelkrim S, Ouargli-Saker R, Zaoui F, Hamacha R, Zahmani H, Hacini S, Bengueddach A, Boukoussa B (2021) Improved catalytic activity of composite beads calcium Alginate@ MIL-101@ Fe3O4 towards reduction toxic organic dyes. J Polym Environ 29:3813–3826

    Article  CAS  Google Scholar 

  11. Kaur K, Jindal R, Tanwar R (2019) Chitosan–gelatin@ tin (IV) tungstatophosphate nanocomposite ion exchanger: synthesis, characterization and applications in environmental remediation. J Polym Environ 27:19–36

    Article  CAS  Google Scholar 

  12. Zhu L, Zong L, Wu X, Li M, Wang H, You J, Li C (2018) Shapeable fibrous aerogels of metal–organic-frameworks templated with nanocellulose for rapid and large-capacity adsorption. ACS Nano 12:4462–4468

    Article  CAS  PubMed  Google Scholar 

  13. Ren W, Gao J, Lei C, Xie Y, Cai Y, Ni Q, Yao J (2018) Recyclable metal-organic framework/cellulose aerogels for activating peroxymonosulfate to degrade organic pollutants. Chem Eng J 349:766–774

    Article  CAS  Google Scholar 

  14. Zhang XF, Feng Y, Wang Z, Jia M, Yao J (2018) Fabrication of cellulose nanofibrils/UiO-66-NH2 composite membrane for CO2/N2 separation. J Membr Sci 568:10–16

    Article  CAS  Google Scholar 

  15. Lei C, Gao J, Ren W, Xie Y, Abdalkarim SYH, Wang S, Ni Q, Yao J (2019) Fabrication of metal-organic frameworks@ cellulose aerogels composite materials for removal of heavy metal ions in water. Carbohydr Polym 205:35–41

    Article  CAS  PubMed  Google Scholar 

  16. Sun L, Shen J, An X, Qian X (2021) Fire retardant, UV and blue light double-blocking super clear Carboxymethylated cellulose bioplastics enabled by metal organic framework. Carbohydr Polym 273:118535

    Article  CAS  PubMed  Google Scholar 

  17. Duan C, Meng J, Wang X, Meng X, Sun X, Xu Y, Zhao W, Ni Y (2018) Synthesis of novel cellulose-based antibacterial composites of Ag nanoparticles@ metal-organic frameworks@ carboxymethylated fibers. Carbohydr polym 193:82–88

    Article  CAS  PubMed  Google Scholar 

  18. Ma X, Lou Y, Chen XB, Shi Z, Xu Y (2019) Multifunctional flexible composite aerogels constructed through in-situ growth of metal-organic framework nanoparticles on bacterial cellulose. Chem Eng J 356:227–235

    Article  CAS  Google Scholar 

  19. Qian L, Lei D, Duan X, Zhang S, Song W, Hou C, Tang R (2018) Design and preparation of metal-organic framework papers with enhanced mechanical properties and good antibacterial capacity. Carbohydr polym 192:44–51

    Article  CAS  PubMed  Google Scholar 

  20. Liu Q, Yu H, Zeng F, Li X, Sun J, Li C, Lin H, Su Z (2021) HKUST-1 modified ultrastability cellulose/chitosan composite aerogel for highly efficient removal of methylene blue. Carbohydr polym 255:117402

    Article  CAS  PubMed  Google Scholar 

  21. Lu W, Duan C, Liu C, Zhang Y, Meng X, Dai L, Wang W, Yu H, Ni Y (2020) A self-cleaning and photocatalytic cellulose-fiber-supported “Ag@ AgCl@ MOF-cloth’’membrane for complex wastewater remediation. Carbohydr Polym 247:116691

    Article  CAS  PubMed  Google Scholar 

  22. Nie J, Xie H, Zhang M, Liang J, Nie S, Han W (2020) Effective and facile fabrication of MOFs/cellulose composite paper for air hazards removal by virtue of in situ synthesis of MOFs/chitosan hydrogel. Carbohydr polym 250:116955

    Article  CAS  PubMed  Google Scholar 

  23. Abdelhameed RM, Rehan M, Emam HE (2018) Figuration of Zr-based MOF@ cotton fabric composite for potential kidney application. Carbohydr polym 195:460–467

    Article  CAS  PubMed  Google Scholar 

  24. Javanbakht S, Pooresmaeil M, Namazi H (2019) Green one-pot synthesis of carboxymethylcellulose/Zn-based metal-organic framework/graphene oxide bio-nanocomposite as a nanocarrier for drug delivery system. Carbohydr polym 208:294–301

    Article  CAS  PubMed  Google Scholar 

  25. Abdelhamid HN, Mathew AP (2022) Cellulose–metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted applications: a review. Coord Chem Rev 451:214263

    Article  CAS  Google Scholar 

  26. Abdelhamid HN, Mathew AP (2021) Cellulose-zeolitic imidazolate frameworks (CelloZIFs) for multifunctional environmental remediation: Adsorption and catalytic degradation. Chem Eng J 426:131733

    Article  Google Scholar 

  27. Jia M, Zhang XF, Feng Y, Zhou Y, Yao J (2020) In-situ growing ZIF-8 on cellulose nanofibers to form gas separation membrane for CO2 separation. J Membr Sci 595:117579

    Article  CAS  Google Scholar 

  28. Policicchio A, Florent M, Attia MF, Whitehead DC, Jagiello J, Bandosz TJ (2020) Effect of the incorporation of functionalized cellulose nanocrystals into UiO-66 on composite porosity and surface heterogeneity alterations. Adv Mater Interfaces 7:1902098

    Article  CAS  Google Scholar 

  29. Mubashir M, Dumée LF, Fong YY, Jusoh N, Lukose J, Chai WS, Show PL (2021) Cellulose acetate-based membranes by interfacial engineering and integration of ZIF-62 glass nanoparticles for CO2 separation. J Hazard Mater 415:125639

    Article  CAS  PubMed  Google Scholar 

  30. Raza A, Japip S, Liang CZ, Farrukh S, Hussain A, Chung TS (2021) Novel cellulose triacetate (CTA)/cellulose diacetate (CDA) blend membranes enhanced by amine functionalized ZIF-8 for CO2 separation. Polymers 13(17):2946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ma H, Wang Z, Zhang XF, Ding M, Yao J (2021) In situ growth of amino-functionalized ZIF-8 on bacterial cellulose foams for enhanced CO2 adsorption. Carbohydr Polym 270:118376

    Article  CAS  PubMed  Google Scholar 

  32. Wang S, Wang C, Zhou Q (2021) Strong foam-like composites from highly mesoporous wood and metal-organic frameworks for efficient CO2 capture. ACS Appl Mater Interfaces 13:29949–29959

    Article  CAS  PubMed Central  Google Scholar 

  33. Al-Janabi N, Hill P, Torrente-Murciano L, Garforth A, Gorgojo P, Siperstein F, Fan X (2015) Mapping the Cu-BTC metal–organic framework (HKUST-1) stability envelope in the presence of water vapour for CO2 adsorption from flue gases. Chem Eng J 281:669–677

    Article  CAS  Google Scholar 

  34. Van Assche TR, Duerinck T, Van der Perre S, Baron GV, Denayer JF (2014) Prediction of molecular separation of polar–apolar mixtures on heterogeneous metal–organic frameworks: HKUST-1. Langmuir 30:7878–7883

    Article  PubMed  Google Scholar 

  35. Ongari D, Tiana D, Stoneburner SJ, Gagliardi L, Smit B (2017) Origin of the strong interaction between polar molecules and copper (II) paddle-wheels in metal organic frameworks. J Phys Chem 121:15135–15144

    CAS  Google Scholar 

  36. Chowdhury P, Mekala S, Dreisbach F, Gumma S (2012) Adsorption of CO, CO2 and CH4 on Cu-BTC and MIL-101 metal organic frameworks: Effect of open metal sites and adsorbate polarity. Microporous Mesoporous Mater 152:246–252

    Article  CAS  Google Scholar 

  37. Liang Z, Marshall M, Chaffee AL (2009) CO2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X). Energy Fuels 23:2785–2789

    Article  CAS  Google Scholar 

  38. Lange LE, Obendorf SK (2015) Functionalization of cotton fiber by partial etherification and self-assembly of polyoxometalate encapsulated in Cu3(BTC)2 metal–organic framework. ACS Appl Mater Interfaces 7:3974–3980

    Article  CAS  PubMed  Google Scholar 

  39. Wang JY, Mangano E, Brandani S, Ruthven DM (2021) A review of common practices in gravimetric and volumetric adsorption kinetic experiments. Adsorption 27:295–318

    Article  CAS  Google Scholar 

  40. Tomé LC, Freire MG, Rebelo LPN, Silvestre AJ, Neto CP, Marrucho IM, Freire CS (2011) Surface hydrophobization of bacterial and vegetable cellulose fibers using ionic liquids as solvent media and catalysts. Green Chem 13:2464–2470

    Article  Google Scholar 

  41. Wada M, Okano T, Sugiyama J (2001) Allomorphs of native crystalline cellulose I evaluated by two equatorial d-spacings. J Wood Sci 47:124–128

    Article  CAS  Google Scholar 

  42. Schlichte K, Kratzke T, Kaskel S (2004) Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous Mesoporous Mater 73:81–88

    Article  CAS  Google Scholar 

  43. Kondor A, Santmarti A, Mautner A, Williams D, Bismarck A, Lee KY (2021) On the BET surface area of nanocellulose determined using volumetric, gravimetric and chromatographic adsorption methods. Front Chem Eng 3:738995

    Article  Google Scholar 

  44. Oshima T, Taguchi S, Ohe K, Baba Y (2011) Phosphorylated bacterial cellulose for adsorption of proteins. Carbohydr Polym 83:953–958

    Article  CAS  Google Scholar 

  45. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KS (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069

    Article  CAS  Google Scholar 

  46. Wang QM, Shen D, Bülow M, Lau ML, Deng S, Fitch FR, Lemcoff NO, Semanscin J (2002) Metallo-organic molecular sieve for gas separation and purification. Microporous Mesoporous Mater 55:217–230

    Article  CAS  Google Scholar 

  47. Yan TK, Nagai A, Michida W, Kusakabe K, Yusup S (2016) Crystal growth of cyclodextrin-based metal-organic framework for carbon dioxide capture and separation. Proc Eng 148:30–34

    Article  CAS  Google Scholar 

  48. Valencia L, Abdelhamid HN (2019) Nanocellulose leaf-like zeolitic imidazolate framework (ZIF-L) foams for selective capture of carbon dioxide. Carbohydr polym 213:338–345

    Article  CAS  PubMed  Google Scholar 

  49. Wang J, Guo X (2020) Adsorption kinetic models: physical meanings, applications, and solving methods. J Hazard Mater 390:122156

    Article  CAS  PubMed  Google Scholar 

  50. Mathias PM, Kumar R, Moyer JD, Schork JM, Srinivasan SR, Auvil SR, Talu O (1996) Correlation of multicomponent gas adsorption by the dual-site Langmuir model. Application to nitrogen/oxygen adsorption on 5A-zeolite. Ind Eng Chem Res 35:2477–2483

    Article  CAS  Google Scholar 

  51. Ko YG, Shin SS, Choi US (2011) Primary, secondary, and tertiary amines for CO2 capture: designing for mesoporous CO2 adsorbents. J Colloid Interface Sci 361:594–602

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the Ferdowsi University of Mashhad under Grant No. 54854. We acknowledge the FUM Central Lab for access to the X-ray diffractometer, SEM and FTIR.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed SQJ, HJ, and HJ. The first draft of the manuscript was written by HJ and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Corresponding author

Correspondence to Hamed Janani.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 79 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabbar, S.Q., Janani, H. & Janani, H. Cellulose-Based Hybrid Composites Enabled by Metal Organic Frameworks for CO2 Capture: The Effect of Cellulosic Substrate. J Polym Environ 30, 4210–4224 (2022). https://doi.org/10.1007/s10924-022-02504-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02504-3

Keywords

Navigation