Rondin J, Bouquey M, Muller R et al (2014) Dispersive mixing efficiency of an elongational flow mixer on PP/EPDM blends: morphological analysis and correlation with viscoelastic properties. Polym Eng Sci 54:1444–1457. https://doi.org/10.1002/pen.23667
CAS
Article
Google Scholar
Arrington KJ, Haag JV, French EV et al (2019) Toughening cellulose: compatibilizing polybutadiene and cellulose triacetate blends. ACS Macro Lett 8:447–453. https://doi.org/10.1021/acsmacrolett.9b00136
CAS
Article
PubMed
Google Scholar
Lee HM, Park OO (1994) Rheology and dynamics of immiscible polymer blends. J Rheol (NY) 38:1405–1425. https://doi.org/10.1122/1.550551
CAS
Article
Google Scholar
Fan J, Cao L, Huang J et al (2019) The construction and verification of toughening model and formula of binary poly(lactic acid)-based TPV with co-continuous structure. Mater Chem Phys 231:95–104. https://doi.org/10.1016/j.matchemphys.2019.04.014
CAS
Article
Google Scholar
Batch GL, Trifkovic M, Hedegaard A, Macosko CW (2015) Immiscible blend morphology after shear and elongation. AIP Conf Proc. https://doi.org/10.1063/1.4918470
Article
Google Scholar
Pötschke P, Paul DR (2003) Formation of co-continuous structures in melt-mixed immiscible polymer blends. J Macromol Sci - Polym Rev 43:87–141. https://doi.org/10.1081/MC-120018022
CAS
Article
Google Scholar
Windhab EJ, Dressler M, Feigl K et al (2005) Emulsion processing - From single-drop deformation to design of complex processes and products. Chem Eng Sci 60:2101–2113. https://doi.org/10.1016/j.ces.2004.12.003
CAS
Article
Google Scholar
Fischer P, Erni P (2007) Emulsion drops in external flow fields: the role of liquid interfaces. Curr Opin Colloid Interface Sci 12:196–205. https://doi.org/10.1016/j.cocis.2007.07.014
CAS
Article
Google Scholar
Guido S, Greco F (2004) Dynamics of a liquid drop in a flowing immiscible liquid. Rheol Rev 2:99–142
Google Scholar
Rallison J (1984) The deformation of small viscous drops and bubbles in shear flows. Annu Rev Fluid Mech 16:45–66. https://doi.org/10.1146/annurev.fluid.16.1.45
Article
Google Scholar
Stone HA (2003) Dynamics of drop deformation and breakup in viscous flows. Annu Rev Fluid Mech 26:65–102. https://doi.org/10.1146/annurev.fl.26.010194.000433
Article
Google Scholar
Briscoe BJ, Lawrence CJ, Mietus WGP (1999) Review of immiscible fluid mixing. Adv Colloid Interface Sci 81:1–17. https://doi.org/10.1016/S0001-8686(99)00002-0
CAS
Article
Google Scholar
Minale M (2010) Models for the deformation of a single ellipsoidal drop: a review. Rheol Acta 49:789–806. https://doi.org/10.1007/s00397-010-0442-0
CAS
Article
Google Scholar
Janssen PJA, Anderson PD (2011) Modeling film drainage and coalescence of drops in a viscous fluid. Macromol Mater Eng 296:238–248. https://doi.org/10.1002/mame.201000375
CAS
Article
Google Scholar
Taylor G (1966) Conical free surfaces and fluid interfaces. Springer, Berlin, pp 790–796
Google Scholar
Sun ZB, Song YN, Ma GQ et al (2021) Imparting gradient and oriented characters to cocontinuous structure for improving integrated performance. Macromol Chem Phys 222:1–10. https://doi.org/10.1002/macp.202100012
CAS
Article
Google Scholar
Te XuY, Wang Y, Zhou CG et al (2020) An electrically conductive polymer composite with a co-continuous segregated structure for enhanced mechanical performance. J Mater Chem C 8:11546–11554. https://doi.org/10.1039/d0tc02265a
CAS
Article
Google Scholar
Decol M, Pachekoski WM, Becker D (2019) Enhancing thermal conductivity and near-infrared radiation reflectance of poly(ε-caprolactone)/poly(lactic acid)-based nanocomposites by incorporating hexagonal boron nitride. Polym Compos 40:3464–3471. https://doi.org/10.1002/pc.25208
CAS
Article
Google Scholar
Willemse RC, Posthuma de Boer A, van Dam J, Gotsis AD (1999) Co-continuous morphologies in polymer blends: the influence of the interfacial tension. Polymer (Guildf) 40:827–834. https://doi.org/10.1016/S0032-3861(98)00307-3
CAS
Article
Google Scholar
Hengti W, Chen J, Li Y (2020) Arrested elongated interface with small curvature by the simultaneous reactive compatibilization and stereocomplexation. Macromolecules 53:10664–10674. https://doi.org/10.1021/acs.macromol.0c01804
CAS
Article
Google Scholar
Taylor GI (1934) The formation of emulsions in definable fields of flow. Proc R Soc London Ser A 146:501–523
CAS
Article
Google Scholar
Manas-Zloczower I (2009) Manas-Zloczower mixing and compounding of polymers. Mix Compd Polym Theory Pract I-V. https://doi.org/10.3139/9783446433716.fm
Article
Google Scholar
Tokihisa M, Yakemoto K, Sakai T et al (2006) Extensional flow mixer for polymer nanocomposites. Polym Eng Sci 46:1040–1050. https://doi.org/10.1002/pen.20542
CAS
Article
Google Scholar
Bouquey M, Loux C, Muller R, Bouchet G (2011) Morphological study of two-phase polymer blends during compounding in a novel compounder on the basis of elongational flows. J Appl Polym Sci 119:482–490. https://doi.org/10.1002/app.32645
CAS
Article
Google Scholar
Zhang G, Wu T, Lin W et al (2017) Preparation of polymer/clay nanocomposites via melt intercalation under continuous elongation flow. Compos Sci Technol 145:157–164. https://doi.org/10.1016/j.compscitech.2017.04.005
CAS
Article
Google Scholar
Wu T, Yuan D, Qu JP (2018) Preparation of poly(L-lactide)/poly(ethylene glycol)/organo-modified montmorillonite nanocomposites via melt intercalation under continuous elongation flow. J Polym Eng 38:449–460. https://doi.org/10.1515/polyeng-2017-0229
CAS
Article
Google Scholar
Hamad K, Kaseem M, Ayyoob M et al (2018) Polylactic acid blends: the future of green, light and tough. Prog Polym Sci 85:83–127. https://doi.org/10.1016/j.progpolymsci.2018.07.001
CAS
Article
Google Scholar
Ramot Y, Haim-Zada M, Domb AJ, Nyska A (2016) Biocompatibility and safety of PLA and its copolymers. Adv Drug Deliv Rev 107:153–162. https://doi.org/10.1016/j.addr.2016.03.012
CAS
Article
PubMed
Google Scholar
Xiang S, Jun S, Li G et al (2016) Effects of molecular weight on the crystallization and melting behaviors of poly(L-lactide). Chin J Polym Sci (Eng Ed) 34:69–76. https://doi.org/10.1007/s10118-016-1727-2
CAS
Article
Google Scholar
Chuaponpat N, Ueda T, Ishigami A et al (2020) Morphology, thermal and mechanical properties of co-continuous porous structure of PLA/PVA blends by phase separation. Polymers (Basel). https://doi.org/10.3390/POLYM12051083
Article
PubMed Central
Google Scholar
Yuan D, Chen K, Xu C et al (2014) Crosslinked bicontinuous biobased PLA/NR blends via dynamic vulcanization using different curing systems. Carbohydr Polym 113:438–445. https://doi.org/10.1016/j.carbpol.2014.07.044
CAS
Article
PubMed
Google Scholar
Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356. https://doi.org/10.1016/j.progpolymsci.2009.12.003
CAS
Article
Google Scholar
Ostafinska A, Fortelny I, Nevoralova M et al (2015) Synergistic effects in mechanical properties of PLA/PCL blends with optimized composition, processing, and morphology. RSC Adv 5:98971–98982. https://doi.org/10.1039/c5ra21178f
CAS
Article
Google Scholar
Fortelny I, Ujcic A, Fambri L, Slouf M (2019) Phase structure, compatibility, and toughness of PLA/PCL blends: a review. Front Mater 6:1–13. https://doi.org/10.3389/fmats.2019.00206
Article
Google Scholar
Yeh JT, Wu CJ, Tsou CH et al (2009) Study on the crystallization, miscibility, morphology, properties of poly(lactic acid)/poly(ε-caprolactone) blends. Polym - Plast Technol Eng 48:571–578. https://doi.org/10.1080/03602550902824390
CAS
Article
Google Scholar
Finotti PFM, Costa LC, Chinelatto MA (2016) Effect of the chemical structure of compatibilizers on the thermal, mechanical and morphological properties of immiscible PLA/PCL blends. Macromol Symp 368:24–29. https://doi.org/10.1002/masy.201600056
CAS
Article
Google Scholar
Hao X, Kaschta J, Pan Y et al (2016) Intermolecular cooperativity and entanglement network in a miscible PLA/PMMA blend in the presence of nanosilica. Polymer (Guildf) 82:57–65. https://doi.org/10.1016/j.polymer.2015.11.029
CAS
Article
Google Scholar
Sarazin P, Roy X, Favis BD (2004) Controlled preparation and properties of porous poly(L-lactide) obtained from a co-continuous blend of two biodegradable polymers. Biomaterials 25:5965–5978. https://doi.org/10.1016/j.biomaterials.2004.01.065
CAS
Article
PubMed
Google Scholar
Wu D, Zhang Y, Zhang M, Zhou W (2008) Phase behavior and its viscoelastic response of polylactide/poly(ε-caprolactone) blend. Eur Polym J 44:2171–2183. https://doi.org/10.1016/j.eurpolymj.2008.04.023
CAS
Article
Google Scholar
Miles IS, Zurek A (1988) Preparation, structure, and properties of two-phase co-continuous polymer blends. Polym Eng Sci 28:796–805. https://doi.org/10.1002/pen.760281205
CAS
Article
Google Scholar
Lacroix C, Grmela M, Carreau PJ (1999) Morphological evolution of immiscible polymer blends in simple shear and elongational flows. J Nonnewton Fluid Mech 86:37–59. https://doi.org/10.1016/S0377-0257(98)00201-8
CAS
Article
Google Scholar
Galloway JA, Macosko CW (2004) Comparison of methods for the detection of cocontinuity in poly(ethylene oxide)/polystyrene blends. Polym Eng Sci 44:714–727. https://doi.org/10.1002/pen.20064
CAS
Article
Google Scholar
Lemenand T, Dupont P, Della VD, Peerhossaini H (2013) Comparative efficiency of shear, elongation and turbulent droplet breakup mechanisms: Review and application. Chem Eng Res Des 91:2587–2600. https://doi.org/10.1016/j.cherd.2013.03.017
CAS
Article
Google Scholar
Wu D, Yuan L, Laredo E et al (2012) Interfacial properties, viscoelasticity, and thermal behaviors of poly(butylene succinate)/polylactide blend. Ind Eng Chem Res 51:2290–2298. https://doi.org/10.1021/ie2022288
CAS
Article
Google Scholar
Taylor P, Grace HP (2009) Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Science (80-) 6445:37–41. https://doi.org/10.1080/00986448208911047
Article
Google Scholar
Delaby I, Froelich D, Muller R (1995) Drop deformation in polymer blends during uniaxial elongational flow. Macromol Symp 100:131–135. https://doi.org/10.1002/masy.19951000121
Article
Google Scholar
Zumbrunnen DA, Inamdar S (2001) Novel sub-micron highly multi-layered polymer films formed by continuous flow chaotic mixing. Chem Eng Sci 56:3893–3897. https://doi.org/10.1016/S0009-2509(01)00062-8
CAS
Article
Google Scholar
Huang ZX, Qu JP (2020) Self-reinforced polyethylene enabled by cyclic pulsating pressure. Polymer (Guildf) 202:122665. https://doi.org/10.1016/j.polymer.2020.122665
CAS
Article
Google Scholar
Rizzuto M, Marinetti L, Caretti D et al (2017) Can poly(ϵ-caprolactone) crystals nucleate glassy polylactide? CrystEngComm 19:3178–3191. https://doi.org/10.1039/c7ce00578d
CAS
Article
Google Scholar
Erba RD, Groeninckx G, Maglio G, et al (2019) Immiscible polymer blends of semicrystalline biocompatible components : thermal properties and phase morphology analysis of PLLA / PCL blends To cite this version : HAL Id : hal-01998591 Italian National Agency for New Technologies , Energy and Sustainabl
Rizzuto M, Mugica A, Zubitur M et al (2016) Plasticization and anti-plasticization effects caused by poly(lactide-ran-caprolactone) addition to double crystalline poly(l-lactide)/poly(ε-caprolactone) blends. Cryst Eng Comm 18:2014–2023. https://doi.org/10.1039/c5ce02559a
CAS
Article
Google Scholar
Kubo H, Okamoto M, Kotaka T (1998) Elongational flow-induced crystallization in supercooled poly(ethylene terephthalate) with different crystallization habit. Polymer (Guildf) 39:4827–4834. https://doi.org/10.1016/S0032-3861(97)10230-0
CAS
Article
Google Scholar
Gao XR, Li Y, Huang HD et al (2019) Extensional stress-induced orientation and crystallization can regulate the balance of toughness and stiffness of polylactide films: interplay of oriented amorphous chains and crystallites. Macromolecules 52:5278–5288. https://doi.org/10.1021/acs.macromol.9b00932
CAS
Article
Google Scholar
Jabarin SA (1992) Strain-induced crystallization of poly(ethylene terephthalate). Polym Eng Sci 32:1341–1349. https://doi.org/10.1002/pen.760321802
CAS
Article
Google Scholar