Skip to main content

Advertisement

Log in

Chitosan/Hydroxyethyl Cellulose Gel Immobilized Polyaniline/CuO/ZnO Adsorptive-Photocatalytic Hybrid Nanocomposite for Congo Red Removal

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Advanced photocatalytic degradation based on polymer/metal oxide hybrid composites can convert organic and related pollutants into an environmentally benign product. In this study, chitosan/hydroxyethyl cellulose (CS/HEC) gel immobilized polyaniline (PANI)/CuO/ZnO composite was prepared by in situ oxidative polymerization followed by ex-situ dispersion. The hybrid nanocomposite synthesized was characterized by FESEM, FTIR, EDX, XRD, TGA, and UV–Visible absorption spectroscopy. The degradation study was performed in the optimum time, pH, PANI/CuO/ZnO loading on CS/HEC gel, and catalyst dosage using 100 µM Congo red. The correlation coefficients (R2) of pseudo-second-order adsorption kinetics were higher than 0.98 at different temperatures, signifying that the model was well fitted and the chemical interaction between Congo red and the catalyst at the interface. The activation energy of 19.56 kJ/mol showed chemisorption of Congo red at the interface. The negative values of standard Gibbs free energy demonstrated that the Congo red adsorbed spontaneously to the catalyst surface. According to the Langmuir–Hinshelwood kinetics model, Congo red photocatalytic degradation followed pseudo-first-order kinetics. The decrease in degradation efficiency with the addition of ammonium oxalate and isopropyl alcohol proved that both positively charged holes and hydroxyl radicals were involved in the catalysis. The catalytic degradation efficiency of the 0.4 g/L catalysts was 99.8 and 93.7% in the 1st and 4th cycle, respectively, indicating that it is efficient, stable, and recyclable. The resulting hybrid nanocomposite is a promising photocatalyst for removing anionic dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Scheme 4

Similar content being viewed by others

References

  1. Copello GJ, Mebert AM, Raineri M, Pesenti MP, Diaz LE (2011) Removal of dyes from water using chitosan hydrogel/SiO2 and chitin hydrogel/SiO2 hybrid materials obtained by the sol-gel method. J Hazard Mater 186:932–939. https://doi.org/10.1016/j.jhazmat.2010.11.097

    Article  CAS  PubMed  Google Scholar 

  2. Verma AK, Dash RR, Bhunia P (2012) A review on chemical coagulation/flocculation technologies for removal of color from textile wastewaters. J Environ Manage 93:154–168. https://doi.org/10.1016/j.jenvman.2011.09.012

    Article  CAS  PubMed  Google Scholar 

  3. Wijetunga S, Li XF, Jian C (2010) Effect of organic load on decolorization of textile wastewater containing acid dyes in up-flow anaerobic sludge blanket reactor. J Hazard Mater 177:792–798. https://doi.org/10.1016/j.jhazmat.2009.12.103

    Article  CAS  PubMed  Google Scholar 

  4. Golka K, Kopps S, Myslak ZW (2004) Carcinogenicity of azo colorants: Influence of solubility and bioavailability. Toxicol Lett 151:203–210. https://doi.org/10.1016/j.toxlet.2003.11.016

    Article  CAS  PubMed  Google Scholar 

  5. Deepak N, Pandey A, Shukla S, Saxena S (2021) Siloxene: a novel 2D photocatalyst for degradation of dye molecules. Nano-Struct Nano-Objects 26:100721. https://doi.org/10.1016/j.nanoso.2021.100721

    Article  CAS  Google Scholar 

  6. Gonte RR, Shelar G, Balasubramanian K (2014) Polymer–agro-waste composites for removal of Congo red dye from wastewater: adsorption isotherms and kinetics. Desalin Water Treat 52:7797–7811. https://doi.org/10.1080/19443994.2013.833876

    Article  CAS  Google Scholar 

  7. You L, Huang C, Lu F, Wang A, Liu X, Zhang Q (2018) Facile synthesis of high performance porous magnetic chitosan-polyethyleneimine polymer composite for Congo red removal. Int J Biol Macromol 107:1620–1628. https://doi.org/10.1016/j.ijbiomac.2017.10.025

    Article  CAS  PubMed  Google Scholar 

  8. Gelaw TB, Sarojini BK, Kodoth AK (2021) Review of the advancements on polymer/metal oxide hybrid nanocomposite-based adsorption assisted photocatalytic materials for dye removal. ChemistrySelect 6:9300–9310. https://doi.org/10.1002/slct.202102020

    Article  Google Scholar 

  9. Hachemaoui M, Mokhtar A, Abdelkrim S, Ouargli-Saker R, Zaoui F, Hamacha R, Habib ZH, Hacini S, Bengueddach A, Boukoussa B (2021) Improved catalytic activity of composite beads calcium alginate@MIL-101@Fe3O4 towards reduction toxic organic dyes. J Polym Environ 29:3813–3826. https://doi.org/10.1007/s10924-021-02177-4

    Article  CAS  Google Scholar 

  10. Sarkar S, Ponce NT, Banerjee A, Bandopadhyay R, Rajendran S, Lichtfouse E (2020) Green polymeric nanomaterials for the photocatalytic degradation of dyes: a review. Environ Chem Lett 18:1569–1580. https://doi.org/10.1007/s10311-020-01021-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Natarajan S, Bajaj HC, Tayade RJ (2018) Recent advances based on the synergetic effect of adsorption for removal of dyes from wastewater using photocatalytic process. J Environ Sci 65:201–222. https://doi.org/10.1016/j.jes.2017.03.011

    Article  CAS  Google Scholar 

  12. Deshpande BD, Agrawal PS, Yenkie MKN, Dhoble SJ (2020) Prospective of nanotechnology in degradation of wastewater: a new challenges. Nano-Struct Nano-Objects 22:100442. https://doi.org/10.1016/j.nanoso.2020.100442

    Article  CAS  Google Scholar 

  13. Gupta VK, Sharma G, Pathania D, Kothiyal NC (2015) Nanocomposite pectin Zr(IV) selenotungstophosphate for adsorptional/photocatalytic remediation of methylene blue and malachite green dyes from aqueous system. J Ind Eng Chem 21:957–964. https://doi.org/10.1016/j.jiec.2014.05.001

    Article  CAS  Google Scholar 

  14. Setthaya N, Chindaprasirt P, Yin S, Pimraksa K (2017) TiO2-zeolite photocatalysts made of metakaolin and rice husk ash for removal of methylene blue dye. Powder Technol 313:417–426. https://doi.org/10.1016/j.powtec.2017.01.014

    Article  CAS  Google Scholar 

  15. Huang JH, Chen JX, Tu YF, Tian Y, Zhou D, Zhenga G, Sang JP, Fu QM (2018) Preparation and photocatalytic activity of CuO/ZnO composite nanostructured films. Mater Res Express 6:015035. https://doi.org/10.1088/2053-1591/aae6ff

    Article  CAS  Google Scholar 

  16. Minh TT, Tu NTT, Van Thi TT, Hoa LT, Long HT, Phong NH, Pham TLM, Khieu DQ (2019) Synthesis of porous octahedral ZnO/CuO composites from Zn/Cu-based MOF-199 and their applications in visible-light-driven photocatalytic degradation of dyes. J Nanomater 2019:5198045. https://doi.org/10.1155/2019/5198045

    Article  CAS  Google Scholar 

  17. Prabhu YT, Navakoteswara Rao V, Shankar MV, Sreedhar B, Pal U (2019) The facile hydrothermal synthesis of CuO@ZnO heterojunction nanostructures for enhanced photocatalytic hydrogen evolution. New J Chem 43:6794–6805. https://doi.org/10.1039/c8nj06056h

    Article  CAS  Google Scholar 

  18. Manyangadze M, Chikuruwo NHM, Narsaiah TB, Chakra CS, Radhakumari M, Danha G (2020) Enhancing adsorption capacity of nano-adsorbents via surface modification: a review. S Afr J Chem Eng 31:25–32. https://doi.org/10.1016/j.sajce.2019.11.003

    Article  Google Scholar 

  19. Alzahrani E (2018) Chitosan membrane embedded with ZnO/CuO nanocomposites for the photodegradation of fast green dye under artificial and solar irradiation. Anal Chem Insights 13:1–13. https://doi.org/10.1177/1177390118763361

    Article  Google Scholar 

  20. Lee SL, Chang C (2019) Recent developments about conductive polymer based composite photocatalysts. Polymers (Basel, Switz) 11:206. https://doi.org/10.3390/polym11020206

    Article  CAS  Google Scholar 

  21. Saravanan R, Sacari E, Gracia F, Khan MM, Mosquera E, Gupta VK (2016) Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of colored dyes. J Mol Liq 221:1029–1033. https://doi.org/10.1016/j.molliq.2016.06.074

    Article  CAS  Google Scholar 

  22. Han S, Wang T, Li B (2017) Preparation of a hydroxyethyl–titanium dioxide–carboxymethyl cellulose hydrogel cage and its effect on the removal of methylene blue. J Appl Polym Sci 134:1–10. https://doi.org/10.1002/app.44925

    Article  CAS  Google Scholar 

  23. Kumar R (2016) Mixed phase lamellar titania-titanate anchored with Ag2O and polypyrrole for enhanced adsorption and photocatalytic activity. J Colloid Interface Sci 477:83–93. https://doi.org/10.1016/j.jcis.2016.05.039

    Article  CAS  PubMed  Google Scholar 

  24. Eskizeybek V, Sari F, Gülce H, Gülce A, Avci A (2012) Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Appl Catal B 119–120:197–206. https://doi.org/10.1016/j.apcatb.2012.02.034

    Article  CAS  Google Scholar 

  25. Singh P, Shukla SK (2020) Advances in polyaniline-based nanocomposites. J Mater Sci 55:1331–1365. https://doi.org/10.1007/s10853-019-04141-z

    Article  CAS  Google Scholar 

  26. Nair VR, Shetty Kodialbail V (2020) Floating bed reactor for visible-light-induced photocatalytic degradation of acid yellow 17 using polyaniline-TiO2 nanocomposites immobilized on polystyrene cubes. Environ Sci Pollut Res 27:14441–14453. https://doi.org/10.1007/s11356-020-07959-2

    Article  CAS  Google Scholar 

  27. Adlan Z, Hir M, Moradihamedani P, Abdullah AH, Mohamed MA (2016) Immobilization of TiO2 into polyethersulfone matrix as hybrid film photocatalyst for effective degradation of methyl orange dye. Mater Sci Semicond Process 57:157–165. https://doi.org/10.1016/j.mssp.2016.10.009

    Article  CAS  Google Scholar 

  28. Zeghioud H, Khellaf N, Djelal H, Amrane A, Bouhelassa M (2016) Photocatalytic reactors dedicated to the degradation of hazardous organic pollutants: kinetics, mechanistic aspects, and design—a review. Chem Eng Commun 203:1415–1431. https://doi.org/10.1080/00986445.2016.1202243

    Article  CAS  Google Scholar 

  29. Kołodyńska D (2011) Chitosan as an effective low-cost sorbent of heavy metal complexes with the polyaspartic acid. Chem Eng J (Amsterdam Neth) 173:520–529. https://doi.org/10.1016/j.cej.2011.08.025

    Article  CAS  Google Scholar 

  30. Jahan I, Zhang L (2022) Natural polymer-based electrospun nanofibrous membranes for wastewater treatment: a review. J Polym Environ 30:1709–1729. https://doi.org/10.1007/s10924-021-02312-1

    Article  CAS  Google Scholar 

  31. Gonçalves JO, Santos JP, Rios EC, Crispim MM, Dotto GL, Pinto LAA (2016) Development of chitosan-based hybrid hydrogels for dyes removal from aqueous binary system. J Mol Liq 225:265–270. https://doi.org/10.1016/j.molliq.2016.11.067

    Article  CAS  Google Scholar 

  32. Ji X, Li B, Yuan B, Guo M (2017) Preparation and characterizations of a chitosan-based medium-density fiberboard adhesive with high bonding strength and water resistance. Carbohydr Polym 176:273–280. https://doi.org/10.1016/j.carbpol.2017.08.100

    Article  CAS  PubMed  Google Scholar 

  33. Harika K, Sunitha K, Kumar PP, Maheshwar K, Rao MY (2012) Basic concepts of cellulose polymers—a comprehensive review. Arch Pharm Pract 3:202–216

    Article  Google Scholar 

  34. Mianehrow H, Afshari R, Mazinani S, Sharif F, Abdouss M (2016) Introducing a highly dispersed reduced graphene oxide nano-biohybrid employing chitosan/hydroxyethyl cellulose for controlled drug delivery. Int J Pharm 509:400–407. https://doi.org/10.1016/j.ijpharm.2016.06.015

    Article  CAS  PubMed  Google Scholar 

  35. Matsuo M, Arimori K, Nakamura C, Nakano M (1996) Delayed-release tablets using hydroxyethylcellulose as a gel-forming matrix. Int J Pharm 138:225–235. https://doi.org/10.1016/0378-5173(96)80001-P

    Article  CAS  Google Scholar 

  36. Wang G, Olofsson G (1995) Ethyl(hydroxyethyl)cellulose and ionic surfactants in dilute solution. Calorimetric and viscosity study of the interaction with SDS and some cationic surfactants. J Phys Chem 99:5588–5596. https://doi.org/10.1021/j100015a049

    Article  CAS  Google Scholar 

  37. Lyu R, Zhang C, Xia T, Chen S, Wang Z, Luo X, Wang L, Wang Y, Yu J, Wang CW (2020) Efficient adsorption of methylene blue by mesoporous silica prepared using sol–gel method employing hydroxyethyl cellulose as a template. Colloids Surf A 606:125425. https://doi.org/10.1016/j.colsurfa.2020.125425

    Article  CAS  Google Scholar 

  38. Beyki MH, Bayat M, Shemirani F (2016) Fabrication of core–shell structured magnetic nanocellulose base polymeric ionic liquid for effective biosorption of Congo red dye. Bioresour Technol 218:326–334. https://doi.org/10.1016/j.biortech.2016.06.069

    Article  CAS  PubMed  Google Scholar 

  39. Duan Y, Shen Y (2017) Synthesis of ZnO–CuO/MCM-48 photocatalyst for the degradation of organic pollutions. Water Sci Technol 76:172–181. https://doi.org/10.2166/wst.2017.196

    Article  CAS  PubMed  Google Scholar 

  40. Mahdizadeh SAF (2015) Treatment of textile wastewater under visible LED lamps using CuO/ZnO nanoparticles immobilized on scoria rock. RSC Adv 5:75474–75482. https://doi.org/10.1039/x0xx00000x

    Article  Google Scholar 

  41. Zhang X, He X, Kang Z, Cui M, Luque R (2019) Waste eggshell-derived dual-functional CuO/ZnO/eggshell nanocomposites: (photo)catalytic reduction and bacterial inactivation. ACS Sustain Chem Eng 7:15762–15771. https://doi.org/10.1021/acssuschemeng.9b04083

    Article  CAS  Google Scholar 

  42. Manoharan RK, Mahalingam S, Gangadaran P, Ahn YH (2020) Antibacterial and photocatalytic activities of 5-nitroindole capped bimetal nanoparticles against multidrug-resistant bacteria. Colloids Surf B 188:110825. https://doi.org/10.1016/j.colsurfb.2020.110825

    Article  CAS  Google Scholar 

  43. Shavisi Y, Sharifnia S, Mohamadi Z (2016) Solar-light-harvesting degradation of aqueous ammonia by CuO/ZnO immobilized on pottery plate: linear kinetic modeling for adsorption and photocatalysis process. J Environ Chem Eng 4:2736–2744. https://doi.org/10.1016/j.jece.2016.04.035

    Article  CAS  Google Scholar 

  44. Zhu J, Shao C, Li X, Han C, Yang S, Ma J, Li X, Liu Y (2018) Immobilization of ZnO/polyaniline heterojunction on electrospun polyacrylonitrile nanofibers and enhanced photocatalytic activity. Mater Chem Phys 214:507–515. https://doi.org/10.1016/j.matchemphys.2018.04.053

    Article  CAS  Google Scholar 

  45. Hassanzadeh-Tabrizi SA, Motlagh MM, Salahshour S (2016) Synthesis of ZnO/CuO nanocomposite immobilized on γ-Al2O3 and application for removal of methyl orange. Appl Surf Sci 384:237–243. https://doi.org/10.1016/j.apsusc.2016.04.165

    Article  CAS  Google Scholar 

  46. Jayaramudu T, Pyarasani RD, Akbari-Fakhrabadi A, Abril-Milan D, Amalraj J (2021) Synthesis of gum acacia capped polyaniline-based nanocomposite hydrogel for the removal of methylene blue dye. J Polym Environ 29:2447–2462. https://doi.org/10.1007/s10924-021-02066-w

    Article  CAS  Google Scholar 

  47. Mirmohseni A, Azizi M, Seyed Dorraji MS (2019) A promising ternary nanohybrid of copper@zinc oxide intercalated with polyaniline for simultaneous antistatic and antibacterial applications. J Coat Technol Res 16:1411–1422. https://doi.org/10.1007/s11998-019-00223-4

    Article  CAS  Google Scholar 

  48. Gelaw TB, Sarojini BK (2021) Enhancing the performance and recyclability of polyaniline/TiO2 hybrid nanocomposite by immobilizing with zein/hydroxyethyl cellulose composites for removal of anionic dyes. Asian J Chem 33:1254–1260. https://doi.org/10.14233/ajchem.2021.23169

    Article  CAS  Google Scholar 

  49. Jundale DM, Navale ST, Khuspe GD, Dalavi DS, Patil PS, Patil VB (2013) Polyaniline–CuO hybrid nanocomposites: synthesis, structural, morphological, optical and electrical transport studies. J Mater Sci Mater Electron 24:3526–3535. https://doi.org/10.1007/s10854-013-1280-5

    Article  CAS  Google Scholar 

  50. Sivakumar K, Kumar VS, Haldorai Y (2012) Zinc oxide nanoparticles reinforced conducting poly (aniline-cop-phenylenediamine) nanocomposite. Compos Interfaces 19:397–409. https://doi.org/10.1080/15685543.2012.739502

    Article  CAS  Google Scholar 

  51. Ghanbari K, Babaei Z (2016) Fabrication and characterization of non-enzymatic glucose sensor based on ternary NiO/CuO/polyaniline nanocomposite. Anal Biochem 498:37–46. https://doi.org/10.1016/j.ab.2016.01.006

    Article  CAS  PubMed  Google Scholar 

  52. Janaki V, Oh BT, Shanthi K, Lee KJ, Ramasamy AK, Kamala-Kannan S (2012) Polyaniline/chitosan composite: an eco-friendly polymer for enhanced removal of dyes from aqueous solution. Synth Met 162:974–980. https://doi.org/10.1016/j.synthmet.2012.04.015

    Article  CAS  Google Scholar 

  53. Bharathi D, Ranjithkumar R, Chandarshekar B, Bhuvaneshwari V (2019) Preparation of chitosan-coated zinc oxide nanocomposite for enhanced antibacterial and photocatalytic activity: as a bionanocomposite. Int J Biol Macromol 129:989–996. https://doi.org/10.1016/j.ijbiomac.2019.02.061

    Article  CAS  PubMed  Google Scholar 

  54. Pandiselvi K, Thambidurai S (2015) Synthesis of adsorption cum photocatalytic nature of polyaniline-ZnO/chitosan composite for removal of textile dyes. Desalin Water Treat 57:8343–8357. https://doi.org/10.1080/19443994.2015.1019365

    Article  CAS  Google Scholar 

  55. Hu H, Hu H, Xin JH, Chan A, He L (2013) Glutaraldehyde-chitosan and poly (vinyl alcohol) blends, and fluorescence of their nano-silica composite films. Carbohydr Polym 91:305–313. https://doi.org/10.1016/j.carbpol.2012.08.038

    Article  CAS  PubMed  Google Scholar 

  56. Tabar FA, Nikfarjam A, Tavakoli N, Gavgani JN, Mahyari M, Hosseini SG (2020) Chemical-resistant ammonia sensor based on polyaniline/CuO nanoparticles supported on three-dimensional nitrogen-doped graphene-based framework nanocomposites. Microchim Acta 187:293. https://doi.org/10.1007/s00604-020-04282-y

    Article  CAS  Google Scholar 

  57. Kushwaha CS, Shukla SK, Govender PP, Abbas NS, Shukla SK (2021) Sustainable water purification and energy generation over crystalline chitosan grafted polyaniline composite. J Polym Environ 29:3744–3755. https://doi.org/10.1007/s10924-021-02129-y

    Article  CAS  Google Scholar 

  58. Mansournia M, Ghaderi L (2017) CuO@ZnO core–shell nanocomposites: novel hydrothermal synthesis and enhancement in photocatalytic property. J Alloys Compd 691:171–177. https://doi.org/10.1016/j.jallcom.2016.08.267

    Article  CAS  Google Scholar 

  59. Li Z, Yadav RM, Sun L, Zhang T, Zhang J, Ajayan PM, Wu J (2020) CuO/ZnO/C electrocatalysts for CO2-to-C2+ products conversion with high yield: on the effect of geometric structure and composition. Appl Catal A 606:117829. https://doi.org/10.1016/j.apcata.2020.117829

    Article  CAS  Google Scholar 

  60. Mostafa MH, Elsawy MA, Darwish MSA, Hussein LI, Abdaleem AH (2020) Microwave-assisted preparation of chitosan/ZnO nanocomposite and its application in dye removal. Mater Chem Phys 248:122914. https://doi.org/10.1016/j.matchemphys.2020.122914

    Article  CAS  Google Scholar 

  61. Sahu K, Rahamn KH, Kar AK (2019) Synergic effect of polyaniline and ZnO to enhance the photocatalytic activity of their nanocomposite. Mater Res Express 6:095304. https://doi.org/10.1088/2053-1591/ab2c5f

    Article  CAS  Google Scholar 

  62. Silva RM, Silva GA, Coutinho OP, Mano JF, Reis RL (2004) Preparation and characterization in simulated body conditions of glutaraldehyde crosslinked chitosan membranes. J Mater Sci 15:1105–1112. https://doi.org/10.1023/B:JMSM.0000046392.44911.46

    Article  CAS  Google Scholar 

  63. Karim MR, Lee HW, Cheong IW, Park SM, Oh W (2008) Conducting polyaniline-titanium dioxide nanocomposites prepared by inverted emulsion polymerization. Polym Compos 16:83–88. https://doi.org/10.1002/pc.20769

    Article  CAS  Google Scholar 

  64. Dinari M, Neamati S (2020) Surface modified layered double hydroxide/polyaniline nanocomposites: synthesis, characterization and Pb2+ removal. Colloids Surf A 589:124438. https://doi.org/10.1016/j.colsurfa.2020.124438

    Article  CAS  Google Scholar 

  65. Wei Y, Hsueh KF (1989) Thermal analysis of chemically synthesized polyaniline and effects of thermal aging on conductivity. J Polym Sci Part A 27:4351–4363. https://doi.org/10.1002/pola.1989.080271312

    Article  CAS  Google Scholar 

  66. Traore MK, Stevenson WTK, McCormick BJ, Dorey RC, Wen S, Meyers D (1991) Thermal analysis of polyaniline Part I. Thermal degradation of HCl-doped emeraldine base. Synth Met 40:137–153. https://doi.org/10.1016/0379-6779(91)91770-B

    Article  CAS  Google Scholar 

  67. Shahabuddin S, Sarih NM, Ismail FH, Shahid MM, Huang NM (2015) Synthesis of chitosan grafted-polyaniline/Co3O4 nanocube nanocomposites and their photocatalytic activity toward methylene blue dye degradation. RSC Adv 5:83857–83867. https://doi.org/10.1039/c5ra11237k

    Article  CAS  Google Scholar 

  68. El Fawal GF, Abu-Serie MM, Hassan MA, Elnouby MS (2018) Hydroxyethyl cellulose hydrogel for wound dressing: fabrication, characterization and in vitro evaluation. Int J Biol Macromol 111:649–659. https://doi.org/10.1016/j.ijbiomac.2018.01.040

    Article  CAS  PubMed  Google Scholar 

  69. Chen R, Yi C, Wu H, Guo S (2010) Degradation kinetics and molecular structure development of hydroxyethyl cellulose under the solid-state mechanochemical treatment. Carbohydr Polym 81:188–195. https://doi.org/10.1016/j.carbpol.2010.02.012

    Article  CAS  Google Scholar 

  70. Umar M, Abdul HA (2013) Photocatalytic degradation of organic pollutants in water by polyoxometalates. Org Pollut: Monit Risk Treat 8:195–208. https://doi.org/10.5772/53699

    Article  CAS  Google Scholar 

  71. Taufik A, Albert A, Saleh R (2017) Sol–gel synthesis of ternary CuO/TiO2/ZnO nanocomposites for enhanced photocatalytic performance under UV and visible light irradiation. J Photochem Photobiol A 344:149–162. https://doi.org/10.1016/j.jphotochem.2017.05.012

    Article  CAS  Google Scholar 

  72. Kim BJ, Oh SG, Han MG, Im SS (2001) Synthesis and characterization of polyaniline nanoparticles in SDS micellar solutions. Synth Met 122:297–304. https://doi.org/10.1016/S0379-6779(00)00304-0

    Article  CAS  Google Scholar 

  73. Lim YF, Choi JJ, Hanrath T (2012) Facile synthesis of colloidal CuO nanocrystals for light-harvesting applications. J Nanomater 2012:1–5. https://doi.org/10.1155/2012/393160

    Article  CAS  Google Scholar 

  74. Khan MMR, Wee YK, Mahmood WAK (2012) Effects of CuO on the morphology and conducting properties of PANI nanofibers. Synth Met 162:1065–1072. https://doi.org/10.1016/j.synthmet.2012.05.009

    Article  CAS  Google Scholar 

  75. Thomas M, Naikoo GA, Ud M, Sheikh D, Bano M, Khan F (2016) Effective photocatalytic degradation of Congo red dye using alginate/carboxymethyl cellulose/TiO2 nanocomposite hydrogel under direct sunlight irradiation. J Photochem Photobiol A 327:33–43. https://doi.org/10.1016/j.jphotochem.2016.05.005

    Article  CAS  Google Scholar 

  76. Quan X, Sun Z, Meng H, Han Y, Wu J, Xu J, Xu Y, Zhang X (2019) Polyethyleneimine (PEI) incorporated Cu-BTC composites: extended applications in ultra-high efficient removal of Congo red. J Solid State Chem 270:231–241. https://doi.org/10.1016/j.jssc.2018.11.021

    Article  CAS  Google Scholar 

  77. Kumaresan N, Sinthiya MMA, Ramamurthi K, Ramesh Babu R, Sethuraman K (2020) Visible light-driven photocatalytic activity of ZnO/CuO nanocomposites coupled with rGO heterostructures synthesized by solid-state method for RhB dye degradation. Arab J Chem 13:3910–3928. https://doi.org/10.1016/j.arabjc.2019.03.002

    Article  CAS  Google Scholar 

  78. Abukhadra MR (2019) Green fabrication of bentonite/chitosan@cobalt oxide composite (BE/CH@Co) of enhanced adsorption and advanced oxidation removal of Congo red dye and Cr(VI) from water. Int J Biol Macromol 126:402–413. https://doi.org/10.1016/j.ijbiomac.2018.12.225

    Article  CAS  PubMed  Google Scholar 

  79. Das R, Bhaumik M, Giri S, Maity A (2017) Sonocatalytic rapid degradation of Congo red dye from aqueous solution using magnetic Fe0/polyaniline nanofibers. Ultrason Sonochem 37:600–613. https://doi.org/10.1016/j.ultsonch.2017.02.022

    Article  CAS  PubMed  Google Scholar 

  80. Ali N, Said A, Ali F, Raziq F, Ali Z, Bilal M, Reinert L, Begum T, Iqbal HMN (2020) Photocatalytic degradation of Congo red dye from aqueous environment using cobalt ferrite nanostructures: development, characterization, and photocatalytic performance. Water Air Soil Pollut 231:50. https://doi.org/10.1007/s11270-020-4410-8

    Article  CAS  Google Scholar 

  81. Zor S, Budak B (2020) Investigation of the effect of PAn and PAn/ZnO photocatalysts on 100% degradation of Congo red under UV visible light irradiation and lightless environment. Turk J Chem 44:486–501. https://doi.org/10.3906/KIM-1907-30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balladka Kunhanna Sarojini.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gelaw, T.B., Sarojini, B.K. & Kodoth, A.K. Chitosan/Hydroxyethyl Cellulose Gel Immobilized Polyaniline/CuO/ZnO Adsorptive-Photocatalytic Hybrid Nanocomposite for Congo Red Removal. J Polym Environ 30, 4086–4101 (2022). https://doi.org/10.1007/s10924-022-02492-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02492-4

Keywords

Navigation