Skip to main content
Log in

Development of Smart Colorimetric Sensing Films Carbohydrate-Based with Soybean Wax and Purple Cauliflower Anthocyanins for Visual Monitoring of Shrimp Freshness

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Novel pH-colorimetric intelligent films were designed from agar and methylcellulose matrix (AM) with soybean wax (SBW) in several percentages (5, 10, 15, and 20%w/w) combined with purple cauliflower (CF) anthocyanins as an indicator of the shrimp freshness at 4 °C and 25 °C of storage temperatures. The color was observed in a mixture of AM/CF anthocyanins with SBW (hydrophobic), which completely converted in pH acidity 2–6 and somewhat in pH alkalinity 7–12, equivalent to the color seen when exposed to ammonia vapors 100 mmol/L. The spectroscopic analysis indicated that SBW was successfully settled into the AM/CF film. The homogenized SBW films enhanced the mechanical, thermal, antioxidant, control release of the anthocyanins and physical properties, significantly reducing water vapor permeability in AM/CF/15%SBW. Remarkably, SBW films showed total protection for UV–Vis light and a beneficial decline in visible light. Lastly, pH-colorimetric film validity to indicate the freshness/spoilage of a model food (shrimp) was confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Kalpana S, Priyadarshini SR, Maria Leena M, Moses JA, Anandharamakrishnan C (2019) Intelligent packaging: trends and applications in food systems. Trends Food Sci Technol 93:145–157. https://doi.org/10.1016/j.tifs.2019.09.008

    Article  CAS  Google Scholar 

  2. Cai D et al (2022) A comprehensive review on innovative and advanced stabilization approaches of anthocyanin by modifying structure and controlling environmental factors. Food Chem 366:130611. https://doi.org/10.1016/j.foodchem.2021.130611

    Article  CAS  PubMed  Google Scholar 

  3. Bhargava N, Sharanagat VS, Mor RS, Kumar K (2020) Active and intelligent biodegradable packaging films using food and food waste-derived bioactive compounds: a review. Trends Food Sci Technol 105:385–401. https://doi.org/10.1016/j.tifs.2020.09.015

    Article  CAS  Google Scholar 

  4. Capello C, Trevisol TC, Pelicioli J, Terrazas MB, Monteiro AR, Valencia GA (2021) Preparation and characterization of colorimetric indicator films based on chitosan/polyvinyl alcohol and anthocyanins from agri-food wastes. J Polym Environ 29(5):1616–1629. https://doi.org/10.1007/s10924-020-01978-3

    Article  CAS  Google Scholar 

  5. Yong H, Liu J (2020) Recent advances in the preparation, physical and functional properties, and applications of anthocyanins-based active and intelligent packaging films. Food Packag Shelf Life 26:100550. https://doi.org/10.1016/j.fpsl.2020.100550

    Article  Google Scholar 

  6. Li S, He Y, Li L, Li D, Chen H (2022) New insights on the regulation of anthocyanin biosynthesis in purple Solanaceous fruit vegetables. Sci Hortic (Amsterdam) 297:110917. https://doi.org/10.1016/j.scienta.2022.110917

    Article  CAS  Google Scholar 

  7. Liu L et al (2020) Preparation and comparison of two functional nanoparticle-based bilayers reinforced with a κ-carrageenan–anthocyanin complex. Int J Biol Macromol 165:758–766. https://doi.org/10.1016/j.ijbiomac.2020.09.178

    Article  CAS  PubMed  Google Scholar 

  8. Hashim SBH et al (2021) Intelligent colorimetric pH sensoring packaging films based on sugarcane wax/agar integrated with butterfly pea flower extract for optical tracking of shrimp freshness. Food Chem. https://doi.org/10.1016/j.foodchem.2021.131514

    Article  PubMed  Google Scholar 

  9. Zhai X et al (2020) Amine-responsive bilayer films with improved illumination stability and electrochemical writing property for visual monitoring of meat spoilage. Sens Actuators B Chem 302:127130

    Article  CAS  Google Scholar 

  10. Rozman M et al (2018) Electrochromic cell with hydrogel-stabilized water-based electrolyte using electrodeposition as a fast color changing mechanism. Electrochim Acta 283:1105–1114. https://doi.org/10.1016/j.electacta.2018.07.052

    Article  CAS  Google Scholar 

  11. Opara Krašovec U, Šurca Vuk A, Orel B (2001) IR spectroscopic studies of charged-discharged crystalline WO3 films. Electrochim Acta 46(13–14):1921–1929. https://doi.org/10.1016/S0013-4686(01)00361-9

    Article  Google Scholar 

  12. Lo Scalzo R, Genna A, Branca F, Chedin M, Chassaigne H (2008) Anthocyanin composition of cauliflower (Brassica oleracea L. var. botrytis) and cabbage (B. oleracea L. var. capitata) and its stability in relation to thermal treatments. Food Chem 107(1):136–144. https://doi.org/10.1016/j.foodchem.2007.07.072

    Article  CAS  Google Scholar 

  13. Kapusta-Duch J, Kusznierewicz B, Leszczyńska T, Borczak B (2016) Effect of cooking on the contents of glucosinolates and their degradation products in selected Brassica vegetables. J Funct Foods 23:412–422. https://doi.org/10.1016/j.jff.2016.03.006

    Article  CAS  Google Scholar 

  14. Mostafavi FS, Zaeim D (2020) Agar-based edible films for food packaging applications—a review. Int J Biol Macromol 159:1165–1176. https://doi.org/10.1016/j.ijbiomac.2020.05.123

    Article  CAS  PubMed  Google Scholar 

  15. Nasatto PL, Pignon F, Silveira JLM, Duarte MER, Noseda MD, Rinaudo M (2015) Methylcellulose, a cellulose derivative with original physical properties and extended applications. Polymers (Basel) 7(5):777–803. https://doi.org/10.3390/polym7050777

    Article  CAS  Google Scholar 

  16. Syahida N, Fitry I, Zuriyati A, Hanani N (2020) Effects of palm wax on the physical, mechanical and water barrier properties of fish gelatin films for food packaging application. Food Packag Shelf Life 23:100437. https://doi.org/10.1016/j.fpsl.2019.100437

    Article  Google Scholar 

  17. Dos Santos FKG, De Oliveira Silva KN, Xavier TDN, De Lima Leite RH, Aroucha EMM (2017) Effect of the addition of carnauba wax on physicochemical properties of Chitosan films. Mater Res 20:485–491. https://doi.org/10.1590/1980-5373-mr-2016-1010

    Article  Google Scholar 

  18. Cortés-Rodríguez M, Villegas-Yépez C, Gil González JH, Rodríguez PE, Ortega-Toro R (2020) Development and evaluation of edible films based on cassava starch, whey protein, and bees wax. Heliyon. https://doi.org/10.1016/j.heliyon.2020.e04884

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fei T, Walker JA, Vickerman KL, Stanley LM, Jarboe D, Wang T (2018) Synthesis and characterization of soybean oil-based waxes and their application as paraffin substitute for corrugated coating. J Ind Eng Chem 58:113–122. https://doi.org/10.1016/j.jiec.2017.09.015

    Article  CAS  Google Scholar 

  20. Shen T, Fan S, Li Y, Xu G, Fan W (2020) Preparation of edible non-wettable coating with soybean wax for repelling liquid foods with little residue. Materials (Basel) 13(15):3308. https://doi.org/10.3390/ma13153308

    Article  CAS  Google Scholar 

  21. Ren K, Fei T, Metzger K, Wang T (2019) Coating performance and rheological characteristics of novel soybean oil-based wax emulsions. Ind Crops Prod 140:111654. https://doi.org/10.1016/j.indcrop.2019.111654

    Article  CAS  Google Scholar 

  22. Alizadeh-sani M, Tavassoli M, Julian D, Hamishehkar H (2021) Food hydrocolloids multifunctional halochromic packaging materials: Saffron petal anthocyanin loaded-chitosan nanofiber/methyl cellulose matrices. Food Hydrocoll 111:106237. https://doi.org/10.1016/j.foodhyd.2020.106237

    Article  CAS  Google Scholar 

  23. Liang T, Sun G, Cao L, Li J, Wang L (2019) A pH and NH3 sensing intelligent film based on Artemisia sphaerocephala Krasch. gum and red cabbage anthocyanins anchored by carboxymethyl cellulose sodium added as a host complex. Food Hydrocoll 87:858–868. https://doi.org/10.1016/j.foodhyd.2018.08.028

    Article  CAS  Google Scholar 

  24. Zhang J, Zou X, Zhai X, Huang XW, Jiang C, Holmes M (2019) Preparation of an intelligent pH film based on biodegradable polymers and roselle anthocyanins for monitoring pork freshness. Food Chem 272:306–312. https://doi.org/10.1016/j.foodchem.2018.08.041

    Article  CAS  PubMed  Google Scholar 

  25. Chiu LW, Zhou X, Burke S, Wu X, Prior RL, Li L (2010) The purple cauliflower arises from activation of a MYB transcription factor. Plant Physiol 154(3):1470–1480. https://doi.org/10.1104/pp.110.164160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Roy S, Kim HJ, Rhim JW (2021) Effect of blended colorants of anthocyanin and shikonin on carboxymethyl cellulose/agar-based smart packaging film. Int J Biol Macromol 183:305–315. https://doi.org/10.1016/j.ijbiomac.2021.04.162

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Y, Simpson BK, Dumont MJ (2018) Effect of beeswax and carnauba wax addition on properties of gelatin films: a comparative study. Food Biosci 26:88–95. https://doi.org/10.1016/j.fbio.2018.09.011

    Article  CAS  Google Scholar 

  28. Zhai X et al (2017) Novel colorimetric films based on starch/polyvinyl alcohol incorporated with roselle anthocyanins for fish freshness monitoring. Food Hydrocoll 69:308–317. https://doi.org/10.1016/j.foodhyd.2017.02.014

    Article  CAS  Google Scholar 

  29. L. Residue (2020) Preparation of edible non-wettable coating with soybean wax for repelling liquid foods with little residue

  30. Kowalczyk D, Baraniak B (2014) Effect of candelilla wax on functional properties of biopolymer emulsion films—a comparative study. Food Hydrocoll 41:195–209. https://doi.org/10.1016/j.foodhyd.2014.04.004

    Article  CAS  Google Scholar 

  31. Huang S et al (2019) A novel colorimetric indicator based on agar incorporated with Arnebia euchroma root extracts for monitoring fish freshness. Food Hydrocoll 90:198–205. https://doi.org/10.1016/j.foodhyd.2018.12.009

    Article  CAS  Google Scholar 

  32. Doan CD et al (2017) Chemical profiling of the major components in natural waxes to elucidate their role in liquid oil structuring. Food Chem 214:717–725. https://doi.org/10.1016/j.foodchem.2016.07.123

    Article  CAS  PubMed  Google Scholar 

  33. York DW, Collins S, Rantape M (2019) Measuring the permeability of thin solid layers of natural waxes. J Colloid Interface Sci 551:270–282. https://doi.org/10.1016/j.jcis.2019.03.104

    Article  CAS  PubMed  Google Scholar 

  34. Kelnar I, Zhigunov A, Kaprálková L, Krejčíková S, Dybal J (2020) Synergistic effects in methylcellulose/hydroxyethylcellulose blend: influence of components ratio and graphene oxide. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.116077

    Article  PubMed  Google Scholar 

  35. Kumar S, Chandra J, Ray D, Mukherjee A, Dutta J (2019) Heliyon Bionanocomposite fi lms of agar incorporated with ZnO nanoparticles as an active packaging material for shelf life extension of green grape. Heliyon 5:e01867. https://doi.org/10.1016/j.heliyon.2019.e01867

    Article  PubMed  PubMed Central  Google Scholar 

  36. Soazo M, Rubiolo AC, Verdini RA (2011) Effect of drying temperature and beeswax content on moisture isotherms of whey protein emulsion film. Proc Food Sci 1:210–215. https://doi.org/10.1016/j.profoo.2011.09.033

    Article  CAS  Google Scholar 

  37. Rodrigues DC, Caceres CA, Ribeiro HL, de Abreu RFA, Cunha AP, Azeredo HMC (2014) Influence of cassava starch and carnauba wax on physical properties of cashew tree gum-based films. Food Hydrocoll 38:147–151. https://doi.org/10.1016/j.foodhyd.2013.12.010

    Article  CAS  Google Scholar 

  38. Alizadeh-Sani M et al (2021) pH-responsive color indicator films based on methylcellulose/chitosan nanofiber and barberry anthocyanins for real-time monitoring of meat freshness. Int J Biol Macromol 166:741–750. https://doi.org/10.1016/j.ijbiomac.2020.10.231

    Article  CAS  PubMed  Google Scholar 

  39. Narasagoudr SS, Shanbhag Y, Chougale RB, Baraker BM, Masti SP, Lobo B (2021) Thermal degradation kinetics of ethyl vanillin crosslinked chitosan/poly (vinyl alcohol) blend films for food packaging applications. Chem Data Collect 34:100739. https://doi.org/10.1016/j.cdc.2021.100739

    Article  CAS  Google Scholar 

  40. Liu C, Zheng Z, Xi C, Liu Y (2021) Exploration of the natural waxes-tuned crystallization behavior, droplet shape and rheology properties of O/W emulsions. J Colloid Interface Sci 587:417–428. https://doi.org/10.1016/j.jcis.2020.12.024

    Article  CAS  PubMed  Google Scholar 

  41. Wang T, Zhao Y (2021) Fabrication of thermally and mechanically stable superhydrophobic coatings for cellulose-based substrates with natural and edible ingredients for food applications. Food Hydrocoll 120:106877. https://doi.org/10.1016/j.foodhyd.2021.106877

    Article  CAS  Google Scholar 

  42. Alvarez-Suarez JM, Cuadrado C, Redondo IB, Giampieri F, González-Paramás AM, Santos-Buelga C (2021) Novel approaches in anthocyanin research—plant fortification and bioavailability issues. Trends Food Sci Technol. https://doi.org/10.1016/j.tifs.2021.01.049

    Article  Google Scholar 

  43. Zhai X et al (2020) Extruded low density polyethylene-curcumin film: a hydrophobic ammonia sensor for intelligent food packaging. Food Packag Shelf Life. https://doi.org/10.1016/j.fpsl.2020.100595

    Article  Google Scholar 

  44. Mohammadalinejhad S, Almasi H, Moradi M (2020) Immobilization of Echium amoenum anthocyanins into bacterial cellulose film: a novel colorimetric pH indicator for freshness/spoilage monitoring of shrimp. Food Control 113:107169. https://doi.org/10.1016/j.foodcont.2020.107169

    Article  CAS  Google Scholar 

  45. Kuswandi B, Jayus TS, Larasati AA, Heng LY (2012) Real-time monitoring of shrimp spoilage using on-package sticker sensor based on natural dye of curcumin. Food Anal Methods 5(4):881–889. https://doi.org/10.1007/s12161-011-9326-x

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 31772073, 31671844); and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zou Xiaobo or Shi Jiyong.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 28323 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashim, S.B.H., Tahir, H.E., Mahdi, A.A. et al. Development of Smart Colorimetric Sensing Films Carbohydrate-Based with Soybean Wax and Purple Cauliflower Anthocyanins for Visual Monitoring of Shrimp Freshness. J Polym Environ 30, 4362–4376 (2022). https://doi.org/10.1007/s10924-022-02483-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02483-5

Keywords