Skip to main content
Log in

Insights into Effective Adsorption of Lead ions from Aqueous Solutions by Using Chitosan-Bentonite Composite Beads

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The chitosan (Ch)—bentonite (B) composite was synthesized and its adsorption properties were investigated for lead ions. The characterization of the Ch-B composite was clarified by FT-IR, SEM, and pzc studies. Factors affecting Pb2+ ion adsorption from aqueous solution; pH, temperature, adsorbent dose, adsorbate concentration, adsorption time, and temperature were examined within the scope of the study. Adsorption was found to increase with increasing pH under acidic conditions, and the adsorbent surface was found to be positive under pH: 5.95. It was found that the adsorption isotherm was suitable for the Langmuir isotherm model and the adsorption capacity from this model was 0.425 mol kg−1. It was observed that the adsorption kinetics fit the PSO and IPD models. Thermodynamic analysis of the adsorption was made and it was determined that the adsorption process was endothermic, with increasing entropy and spontaneous. The reuse conditions of the adsorbent were investigated and it was found that the adsorbed ion was recovered 84% in 0.1 M HCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Majumdar SS, Das SK, Chakravarty R, Saha T, Bandyopadhyay TS, Guha AK (2010) A study on lead adsorption by Mucor rouxii biomass. Desalination 251:96–102

    Article  CAS  Google Scholar 

  2. Cechinel MAP, de Souza AAU (2014) Study of lead (II) adsorption onto activated carbon originating from cow bone. J Clean Prod 65:342–349

    Article  CAS  Google Scholar 

  3. Basu M, Guha AK, Ray L (2017) Adsorption of lead on cucumber peel. J Clean Prod 151:603–615

    Article  CAS  Google Scholar 

  4. Nordberg GF, Fowler BA, Nordberg M (eds) (2014) Handbook on the toxicology of metals. Academic Press, Cambridge

    Google Scholar 

  5. Kumar A, MMS CP, Chaturvedi AK, Shabnam AA, Subrahmanyam G, Mondal R, Yadav KK (2020) Lead toxicity: health hazards influence on the food chain and sustainable remediation approaches. Int J Environ Res Public Health 17:2179

    Article  CAS  PubMed Central  Google Scholar 

  6. Feng Q, Lin Q, Gong F, Sugita S, Shoya M (2004) Adsorption of lead and mercury by rice husk ash. J Colloid Interface Sci 278:1–8

    Article  CAS  PubMed  Google Scholar 

  7. Şenol ZM, Gürsoy N, Şimşek S, Özer A, Karakuş N (2020) Removal of food dyes from aqueous solution by chitosan-vermiculite beads. Int J Biol Macromol 148:635–646

    Article  PubMed  CAS  Google Scholar 

  8. Şenol ZM, Gül ÜD, Gurbanov R, Şimşek S (2021) Optimization the removal of leading by fungi: explanation of the mycosorption mechanism. J Environ Chem Eng 9:104760

    Article  CAS  Google Scholar 

  9. Zhang J, Shao J, Jin Q, Zhang X, Yang H, Chen Y, Chen H (2020) Effect of deashing on activation process and lead adsorption capacities of sludge-based biochar. Sci Total Environ 716:137016

    Article  CAS  PubMed  Google Scholar 

  10. Elsayed NH, Alatawi RA, Monier M (2021) Amidoxime modified chitosan-based ion-imprinted polymer for selective removal of uranyl ions. Carbohydr Polym 256:117509

    Article  CAS  PubMed  Google Scholar 

  11. Elsayed NH, Alatawi A, Monier M (2020) Diacetylmonoxine modified chitosan derived ion-imprinted polymer for selective solid-phase extraction of nickel (II) ions. React Funct Polym 151:104570

    Article  CAS  Google Scholar 

  12. Lewandowska K, Sionkowska A, Kaczmarek B, Furtos G (2014) Characterization of chitosan composites with various clays. Int J Biol Macromol 65:534–541

    Article  CAS  PubMed  Google Scholar 

  13. Monier M, Abdel-Latif DA, Abou El-Reash YG (2016) Ion-imprinted modified chitosan resin for selective removal of Pd (II) ions. J Colloid Interface Sci 469:344–354

    Article  CAS  PubMed  Google Scholar 

  14. Elsayed NH, Monier M, Alatawi RA, Albalawi MA, Alhawiti AS (2022) Preparation of chromium (III) ion-imprinted polymer based on azo dye functionalized chitosan. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2022.119139

    Article  PubMed  Google Scholar 

  15. Monier M, Abdel-Latif DA (2017) Fabrication of Au (III) ion-imprinted polymer based on thiol-modified chitosan. Int J Biol Macromol 105:777–787

    Article  CAS  PubMed  Google Scholar 

  16. Banat FA, Al-Bashir B, Al-Asheh S, Hayajneh O (2000) Adsorption of phenol by bentonite. Environ Pollut 107:391–398

    Article  CAS  PubMed  Google Scholar 

  17. Şenol ZM, Şimşek S (2020) Equilibrium kinetics and thermodynamics of Pb (II) ions from aqueous solution by adsorption onto chitosan-dolomite composite beads. J Environ Anal Chem. https://doi.org/10.1080/03067319.2020.1790546

    Article  Google Scholar 

  18. Kumar A, Patra C, Kumar S, Narayanasamy S (2022) Effect of magnetization on the adsorptive removal of emerging contaminant ciprofloxacin by magnetic acid activated carbon. Environ Res 206:112604

    Article  CAS  PubMed  Google Scholar 

  19. Pawlak A, Mucha M (2003) Thermogravimetric and FTIR studies of chitosan blends. Thermochim Acta 396:153–166

    Article  CAS  Google Scholar 

  20. Ren L, Xu J, Zhang Y, Zhou J, Chen D, Chang Z (2019) Preparation and characterization of porous chitosan microspheres and adsorption performance for hexavalent chromium. Int J Biol Macromol 135:898–906

    Article  CAS  PubMed  Google Scholar 

  21. Kumar A, Lingfa P (2020) Sodium bentonite and kaolin clays: comparative study on their FT-IR XRF and XRD. Mater Today: Proc 22:737–742

    CAS  Google Scholar 

  22. Ren Y, Wang H, Ren Z, Zhang Y, Geng Y, Wu L, Pu X (2019) Adsorption of imidazolium-based ionic liquid on sodium bentonite and its effects on rheological and swelling behaviors. Appl Clay Sci 182:105248

    Article  CAS  Google Scholar 

  23. Hassan AF, Hrdina R (2018) Chitosan/nanohydroxyapatite composite based scallop shells as an efficient adsorbent for mercuric ions: Static and dynamic adsorption studies. Int J Biol Macromol 109:507–516

    Article  CAS  PubMed  Google Scholar 

  24. Niu M, Li G, Cao L, Wang X, Wang W (2020) Preparation of sulfate aluminate cement amended bentonite and its use in heavy metal adsorption. J Clean Prod 256:120700

    Article  CAS  Google Scholar 

  25. Kovačević D, Pohlmeier A, Özbaş G, Narres HD, Kallay MJN (2000) The adsorption of lead species on goethite. Colloids Surf A Physicochem Eng 166:225–233

    Article  Google Scholar 

  26. Langmuir I (1918) The adsorption of gases on plane surfaces of glass mica and platinum. J Am Chem Soc 40:1361e1403

    Article  Google Scholar 

  27. Priyan VV, Kumar N, Narayanasamy S (2021) Development of Fe3O4/CAC nanocomposite for the effective removal of contaminants of emerging concerns (Ce3+) from water: an ecotoxicological assessment. Environ Pollut 285:117326

    Article  CAS  Google Scholar 

  28. Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem A 57:385–471

    CAS  Google Scholar 

  29. Shahnaz T, Patra C, Sharma V, Selvaraju N (2020) A comparative study of raw, acid-modified, and EDTA-complexed Acacia auriculiformis biomass for the removal of hexavalent chromium. Chem Ecol 36(4):360–381

    Article  CAS  Google Scholar 

  30. Dubinin MM, Zaverina ED, Radushkevich LV (1947) Sorption and structure of active carbons I. Adsorption of organic vapors. Zh Fiz Khim 21:1351–1362

    CAS  Google Scholar 

  31. Kumar N, Narayanasamy S (2022) Toxicological assessment and adsorptive removal of lead (Pb) and Congo red (CR) from water by synthesized iron oxide/activated carbon (Fe3O4/AC) nanocomposite. Chemosphere 294:133758

    Article  PubMed  CAS  Google Scholar 

  32. Soltani RDC, Khorramabadi GS, Khataee AR, Jorfi S (2014) Silica nanopowders/alginate composite for adsorption of lead (II) ions in aqueous solutions. J Taiwan Inst Chem Eng 45(3):973–980

    Article  CAS  Google Scholar 

  33. Fan L, Luo C, Sun M, Li X, Qiu H (2013) Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Colloids Surf B 103:523–529

    Article  CAS  Google Scholar 

  34. Momčilović M, Purenović M, Bojić A, Zarubica A, Ranđelović M (2011) Removal of lead (II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination 276(1–3):53–59

    Article  CAS  Google Scholar 

  35. Mata YN, Blázquez ML, Ballester A, González F (2009) Muñoz ICrption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus. J Hazard Mater 163:555–562

    Article  CAS  PubMed  Google Scholar 

  36. Najafi M, Yousefi Y (2012) Rafati Synthesis, characterization and adsorption studies of several heavy metal ions on amino-functionalized silica nano hollow sphere and silica gel. Sep Purif Technol 85:193–205

    Article  CAS  Google Scholar 

  37. Rusmin R, Sarkar B, Mukhopadhyay R, Tsuzuki T, Liu Y, Naidu R (2022) Facile one-pot preparation of magnetic chitosan-palygorskite nanocomposite for efficient removal of lead from water. J Colloid Interface Sci 608:575–587

    Article  CAS  PubMed  Google Scholar 

  38. Senol-Arslan D (2021) Isotherms, kinetics, and thermodynamics of Pb (II) adsorption by crosslinked chitosan/sepiolite composite. Polym Bull. https://doi.org/10.1007/s00289-021-03688-9

    Article  Google Scholar 

  39. Idris A, Ismail NSM, Hassan N, Misran E (2012) Ngomsik Synthesis of magnetic alginate beads based on maghemite nanoparticles for Pb(II) removal in aqueous solution J. Ind Eng Chem 18:1582–1589

    Article  CAS  Google Scholar 

  40. Şölener M, Tunali S, Özcan AS, Özcan A, Gedikbey T (2008) Adsorption characteristics of lead (II) ions onto the clay/poly (methoxyethyl) acrylamide (PMEA) composite from aqueous solutions. Desalination 223(1–3):308–322

    Article  CAS  Google Scholar 

  41. Pandey S, Fosso-Kankeu E, Spiro MJ, Waanders F, Kumar N, Ray SS et al (2020) Equilibrium, kinetic, and thermodynamicstudies of lead ion adsorption from mine wastewater onto MoS2-clinoptilolitecomposite. Mater Today Chem 18:100376

    Article  CAS  Google Scholar 

  42. Hamza IA, Martincigh BS, Ngila JC, Nyamori VO (2013) Adsorption studies of aqueous Pb (II) onto a sugarcanebagasse/multi-walled carbon nanotube composite. Phys Chem Earth A/b/c 66:157–166

    Article  Google Scholar 

  43. Chen AH, Liu SC, Chen CY, Chen CY (2008) Comparative adsorption of Cu (II), Zn (II), and Pb (II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin. J Hazard Mater 154(1–3):184–191

    Article  CAS  PubMed  Google Scholar 

  44. Wan Ngah WS (2010) Fatinathan Pb (II) biosorption using chitosan and chitosan derivatives beads: equilibrium, ion exchange and mechanism studies. J Environ Sci 22(3):338–346

    Article  CAS  Google Scholar 

  45. Yang S, Hu J, Chen C, Shao D, Wang X (2011) Mutual effects of Pb (II) and humic acid adsorption on multiwalled carbon nanotubes/polyacrylamide composites from aqueous solutions. Environ Sci Technol 45(8):3621–3627

    Article  CAS  PubMed  Google Scholar 

  46. Şenol ZM, Şimşek S (2020) Equilibrium, kinetics, and thermodynamics of Pb (II) ions from aqueous solution by adsorption onto chitosan-dolomite composite beads. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2020.1790546

    Article  Google Scholar 

  47. Zhu Y, Hu J, Wang J (2012) Competitive adsorption of Pb (II), Cu (II), and Zn (II) onto xanthate-modified magnetic chitosan. J Hazard Mater 221:155–161

    Article  PubMed  CAS  Google Scholar 

  48. Sun X, Peng B, Ji Y, Chen J, Li D (2009) Chitosan (chitin)/cellulose composite bio sorbents prepared using ionic liquid for heavy metal ions adsorption. AIChE J 55(8):2062–2069

    Article  CAS  Google Scholar 

  49. Gupta N, Kushwaha AK, Chattopadhyaya MC (2012) Adsorptive removal of Pb2+, Co2+, and Ni2+ by hydroxyapatite/chitosan composite from aqueous solution. J Taiwan Inst Chem Eng 43:125–131

    CAS  Google Scholar 

  50. Hu C, Zhu P, Cai M, Hu H, Fu Q (2017) Comparative adsorption of Pb (II), Cu (II), and Cd (II) on chitosan saturated montmorillonite: kinetic, thermodynamic, and equilibrium studies. Appl Clay Sci 143:320–326

    Article  CAS  Google Scholar 

  51. Unuabonah EI, Adebowale KO, Olu-Owolabi BI, Yang LZ, Kon LX (2008) Adsorption of Pb(II) and Cd(II) from aqueous solutions onto sodiumtetraborate-modified kaolinite clay: equilibrium and thermodynamic studies. Hydrometallurgy 93:1–9

    Article  CAS  Google Scholar 

  52. Rao MM, Ramana DK, Seshaiah K, Wang MC (2009) Chang removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls. J Hazard Mater 166:1006–1013

    Article  CAS  PubMed  Google Scholar 

  53. He J, Lu Y (2014) Luo Ca(II) imprinted chitosan microspheres: an effective and green adsorbent for the removal of Cu(II), Cd(II), and Pb(II) from aqueous solutions. Chem Eng J 244:202–208

    Article  CAS  Google Scholar 

  54. Heidari A, Younesi H, Mehraban Z (2013) Heikkinen Selective adsorption of Pb(II), Cd(II), and Ni(II) ions from aqueous solution using chitosan–MAA nanoparticles. Int J Biol Macromol 61:251–263

    Article  CAS  PubMed  Google Scholar 

  55. Ho YS, McKay G (1998) Kinetic models for the sorption of dye from aqueous solution by wood. J Environ Sci Health B 76:183–191

    CAS  Google Scholar 

  56. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  57. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. Publ Pa Div Sanit Eng 89:31–60

    Article  Google Scholar 

  58. Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434

    Article  CAS  Google Scholar 

  59. Shahnaz T, Priyan VV, Jayakumar A, Narayanasamy S (2022) Magnetic nanocellulose from Cyperus rotundas grass in the absorptive removal of rare earth element cerium (III): toxicity studies and interpretation. Chemosphere 287:1319

    Article  CAS  Google Scholar 

Download references

Funding

The present study was partly supported by Sivas Cumhuriyet University Scientific Research Projects Commission.

Author information

Authors and Affiliations

Authors

Contributions

ZMŞ: conceptualization, data curation, investigation, methodology, project administration, supervision, visualization, writing—original draft, writing—review and editing. SŞ: Conceptualization, data curation, investigation, methodology, writing—original draft, supervision, visualization, writing—original draft, writing—review and editing.

Corresponding authors

Correspondence to Zeynep Mine Şenol or Selçuk Şimşek.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şenol, Z.M., Şimşek, S. Insights into Effective Adsorption of Lead ions from Aqueous Solutions by Using Chitosan-Bentonite Composite Beads. J Polym Environ 30, 3677–3687 (2022). https://doi.org/10.1007/s10924-022-02464-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02464-8

Keywords