Skip to main content
Log in

High Toughness Composite Films Produced From Zein and Bamboo Fibers Based on Incorporating Biochar: Effects of Alkali Treatment

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Aiming at the problems caused by the large-scale use of non-degradable plastic films, new degradable zein composite films are developed with natural fibers based on incorporating biochar. Bamboo fibers were as raw materials to prepare biochar under 500°C and alkali treated bamboo fibers under three NaOH concentrations (2%, 4%, and 6%). The results indicate that better compatibility of zein composite films was achieved due to the reduction of polarity and the increase of roughness by alkali treatment shown in the results of XRD, FTIR, SEM, and contact angles. TGA and DSC show that adding alkali treated bamboo fibers delayed the thermal decomposition rate, increased the thermal denaturation temperature, and thereby improved the thermal properties of zein. A maximum of tensile properties with 0.19 MPa tensile strength, 4.50 MPa tensile modulus, and 331.67% elongation at break was reached at the resultant composite film of 2% concentration alkali treated bamboo fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang C, Wang C, Cao G, Wang D, Ho S-H (2020) A sustainable solution to plastics pollution: An eco-friendly bioplastic film production from high-salt contained Spirulina sp. residues. J Hazard Mater 388:121773

    Article  CAS  Google Scholar 

  2. Xu L, Zhao J, Qian S, Zhu X, Takahashi J (2021) Green-plasticized poly (lactic acid)/nanofibrillated cellulose biocomposites with high strength, good toughness and excellent heat resistance. Compos Sci Technol 203:108613

    Article  CAS  Google Scholar 

  3. Wu F, Misra M, Mohanty AK (2020) Sustainable green composites from biodegradable plastics blend and natural fibre with balanced performance: Synergy of nano-structured blend and reactive extrusion. Compos Sci Technol 200:108369

    Article  CAS  Google Scholar 

  4. Gaur VK, Sharma P, Sirohi R, Awasthi MK, Dussap C-G, Pandey A (2020) Assessing the impact of industrial waste on environment and mitigation strategies: A comprehensive review. J Hazard Mater 398:123019

    Article  CAS  Google Scholar 

  5. Li C, Xiang F, Wu K, Jiang F, Ni X (2020) Changes in microstructure and rheological properties of konjac glucomannan/zein blend film-forming solution during drying. Carbohydr Polym 250:116840

    Article  CAS  Google Scholar 

  6. Giteru SG, Ali A, Oey I (2021) Understanding the relationship between rheological characteristics of pulsed electric fields treated chitosan-zein-poly (vinyl alcohol)-polyethylene glycol composite dispersions and the structure-function of their resulting thin-films. Food Hydrocolloids 113:106452

    Article  CAS  Google Scholar 

  7. Li Q, Gao R, Wang L, Xu M, Yuan Y, Ma L, Wan Z, Yang X (2020) Nanocomposites of bacterial cellulose nanofibrils and zein nanoparticles for food packaging. ACS Appl Nano Mater 3:2899–2910

    Article  CAS  Google Scholar 

  8. Qu L, Chen G, Dong S, Huo Y, Yin Z, Li S, Chen Y (2019) Improved mechanical and antimicrobial properties of zein/chitosan films by adding highly dispersed nano-TiO2. Ind Crop Prod 130:450–458

    Article  CAS  Google Scholar 

  9. Zhang Q, Cai H, Yi W, Lei H, Liu H, Wang W, Ruan R (2020) Biocomposites from organic solid wastes derived biochars: a review. Materials 13:3923

    Article  CAS  Google Scholar 

  10. Sheng K, Zhang S, Qian S, Lopez CAF (2019) High-toughness PLA/Bamboo cellulose nanowhiskers bionanocomposite strengthened with silylated ultrafine bamboo-char. Compos Pt B-Eng 165:174–182

    Article  CAS  Google Scholar 

  11. Dahal RK, Acharya B, Saha G, Bissessur R, Dutta A, Farooque A (2019) Biochar as a filler in glassfiber reinforced composites: Experimental study of thermal and mechanical properties. Compos Pt B-Eng 175:107169

    Article  CAS  Google Scholar 

  12. Zhang Q, Zhang D, Lu W, Khan MU, Xu H, Yi W, Lei H, Huo E, Qian M, Zhao Y (2020) Production of high-density polyethylene biocomposites from rice husk biochar: Effects of varying pyrolysis temperature. Sci Total Environ 738:139910

    Article  CAS  Google Scholar 

  13. Tolvanen J, Hannu J, Hietala M, Kordas K, Jantunen H (2019) Biodegradable multiphase poly (lactic acid)/biochar/graphite composites for electromagnetic interference shielding. Compos Sci Technol 181:107704

    Article  CAS  Google Scholar 

  14. Li S, Xu Y, Jing X, Yilmaz G, Li D, Turng L-S (2020) Effect of carbonization temperature on mechanical properties and biocompatibility of biochar/ultra-high molecular weight polyethylene composites. Compos Pt B-Eng 196:108120

    Article  CAS  Google Scholar 

  15. Giorcelli M, Khan A, Pugno NM, Rosso C, Tagliaferro A (2019) Biochar as a cheap and environmental friendly filler able to improve polymer mechanical properties. Biomass Bioenerg 120:219–223

    Article  CAS  Google Scholar 

  16. Das O, Bhattacharyya D, Hui D, Lau K-T (2016) Mechanical and flammability characterisations of biochar/polypropylene biocomposites. Compos Pt B-Eng 106:120–128

    Article  CAS  Google Scholar 

  17. Väisänen T, Das O, Tomppo L (2017) A review on new bio-based constituents for natural fiber-polymer composites. J Clean Prod 149:582–596

    Article  Google Scholar 

  18. Hou G, Liu Y, Zhang D, Li G, Xie H, Fang Z (2020) Approaching theoretical haze of highly transparent all-cellulose composite films. ACS Appl Mater Interfaces 12:31998–32005

    Article  CAS  Google Scholar 

  19. Yu X, Li C, Tian H, Yuan L, Xiang A, Li J, Wang C, Rajulu AV (2020) Hydrophobic cross-linked zein-based nanofibers with efficient air filtration and improved moisture stability. Chem Eng J 396:125373

    Article  CAS  Google Scholar 

  20. Chen C, Wang Y, Wu Q, Wan Z, Li D, Jin Y (2020) Highly strong and flexible composite hydrogel reinforced by aligned wood cellulose skeleton via alkali treatment for muscle-like sensors. Chem Eng J 400:125876

    Article  CAS  Google Scholar 

  21. Lin J, Yang Z, Hu X, Hong G, Zhang S, Song W (2018) The effect of alkali treatment on properties of dopamine modification of bamboo fiber/polylactic acid composites. Polymers 10:403

    Article  Google Scholar 

  22. Fernandez-Sanroman A, Acevedo-García V, Pazos M, Sanromán MA, Rosales E (2020) Removal of sulfamethoxazole and methylparaben using hydrocolloid and fiber industry wastes: Comparison with biochar and laccase-biocomposite. J Clean Prod 271:122436

    Article  CAS  Google Scholar 

  23. He J, Strezov V, Kumar R, Weldekidan H, Jahan S, Dastjerdi BH, Zhou X, Kan T (2019) Pyrolysis of heavy metal contaminated Avicennia marina biomass from phytoremediation: Characterisation of biomass and pyrolysis products. J Clean Prod 234:1235–1245

    Article  CAS  Google Scholar 

  24. Srivastava A, Dave H, Azad SK, Kumari M, Karwal S, Karma P, Tiwari P, Prasad KS (2021) Iron Modification of Biochar Developed from Tectona grandis Linn. F. for Adsorptive Removal of Tetracycline from Aqueous Solution. Anal Chem Lett 11:360–375

    Article  CAS  Google Scholar 

  25. Yan Y, Sarkar B, Zhou L, Zhang L, Li Q, Yang J, Bolan N (2020) Phosphorus-rich biochar produced through bean-worm skin waste pyrolysis enhances the adsorption of aqueous lead. Environ Pollut 266:115177

    Article  CAS  Google Scholar 

  26. Moradi-Choghamarani F, Moosavi AA, Baghernejad M (2019) Determining organo-chemical composition of sugarcane bagasse-derived biochar as a function of pyrolysis temperature using proximate and Fourier transform infrared analyses. J Therm Anal Calorim 138:331–342

    Article  CAS  Google Scholar 

  27. Shanmugasundaram N, Rajendran I, Ramkumar T (2018) Characterization of untreated and alkali treated new cellulosic fiber from an Areca palm leaf stalk as potential reinforcement in polymer composites. Carbohydr Polym 195:566–575

    Article  CAS  Google Scholar 

  28. Hosseini F, Miri MA, Najafi M, Soleimanifard S, Aran M (2021) Encapsulation of rosemary essential oil in zein by electrospinning technique. J Food Sci 86:4070–4086

    Article  CAS  Google Scholar 

  29. Xiao J, Gu C, Zhu D, Huang Y, Luo Y, Zhou Q (2021) Development and characterization of an edible chitosan/zein-cinnamaldehyde nano-cellulose composite film and its effects on mango quality during storage. LWT 140:110809

    Article  CAS  Google Scholar 

  30. Zhang Q, Zhang D, Xu H, Lu W, Ren X, Cai H, Lei H, Huo E, Zhao Y, Qian M (2020) Biochar filled high-density polyethylene composites with excellent properties: Towards maximizing the utilization of agricultural wastes. Ind Crop Prod 146:112185

    Article  CAS  Google Scholar 

  31. Zhang Y, Deng L, Zhong H, Zou Y, Qin Z, Li Y, Zhang H (2022) Impact of glycation on physical properties of composite gluten/zein nanofibrous films fabricated by blending electrospinning. Food Chem 366:130586

    Article  CAS  Google Scholar 

  32. George J, Azad LB, Poulose AM, An Y, Sarmah AK (2019) Nano-mechanical behaviour of biochar-starch polymer composite: Investigation through advanced dynamic atomic force microscopy. Compos Pt A-Appl Sci Manuf 124:105486

    Article  CAS  Google Scholar 

  33. Chen G, Dong S, Zhao S, Li S, Chen Y (2019) Improving functional properties of zein film via compositing with chitosan and cold plasma treatment. Ind Crop Prod 129:318–326

    Article  CAS  Google Scholar 

  34. Wang K, Wu K, Xiao M, Kuang Y, Corke H, Ni X, Jiang F (2017) Structural characterization and properties of konjac glucomannan and zein blend films. Int J Biol Macromol 105:1096–1104

    Article  CAS  Google Scholar 

  35. Bajwa DS, Adhikari S, Shojaeiarani J, Bajwa SG, Pandey P, Shanmugam SR (2019) Characterization of bio-carbon and ligno-cellulosic fiber reinforced bio-composites with compatibilizer. Constr Build Mater 204:193–202

    Article  CAS  Google Scholar 

  36. Chen H, Wu J, Shi J, Zhang W, Wang G (2021) Strong and highly flexible slivers prepared from natural bamboo culm using NaOH pretreatment. Ind Crop Prod 170:113773

    Article  CAS  Google Scholar 

  37. Notario-Pérez F, Cazorla-Luna R, Martín-Illana A, Galante J, Ruiz-Caro R, Sarmento B, das Neves J, Veiga M-D (2021) Influence of Plasticizers on the pH-Dependent Drug Release and Cellular Interactions of Hydroxypropyl Methylcellulose/Zein Vaginal Anti-HIV Films Containing Tenofovir. Biomacromolecules 22:938–948

    Article  Google Scholar 

  38. Dun M, Fu H, Hao J, Shan W, Wang W (2021) Tailoring flexible interphases in bamboo fiber-reinforced linear low-density polyethylene composites. Compos Pt A-Appl Sci Manuf 150:106606

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Project funded by China Postdoctoral Science Foundation (2021M692807), the Natural Science Foundation of Zhejiang Province (LY22C160003), and the National Natural Science Foundation of China (31971794).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuichuan Sheng.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Guo, Z., Fang, Y. et al. High Toughness Composite Films Produced From Zein and Bamboo Fibers Based on Incorporating Biochar: Effects of Alkali Treatment. J Polym Environ 30, 3515–3522 (2022). https://doi.org/10.1007/s10924-022-02448-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02448-8

Keywords