Skip to main content

Advertisement

Log in

Microfibrillated Cellulose-Silver Nanocomposite Based PVA Hydrogels and Their Enhanced Physical, Mechanical and Antibacterial Properties

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Modification of cellulose with silver nanoparticles produces various nanocomposites with significantly developed properties. This work aims to prepare a PVA hydrogel modified with cellulose/silver nanocomposites having potential applications in various fields including biomedical, antimicrobial inhibition, textile wears, etc. Microfibrillated cellulose/silver nanocomposites hydrogels were prepared in the aqueous medium with aid of microwave-assisted heating. Different percentages of nanocomposites were incorporated in PVA hydrogel to enhance the properties of PVA hydrogel. Prepared products were characterized by UV–Visible spectroscopy, FTIR, TGA, XRD, and SEM. The swelling (in water saline, acidic and alkaline solution), tensile, thermal, and antibacterial properties were also examined. The formation of Ag nanoparticles (AgNPs) in the (MFC-Ag)NC was confirmed by XRD and UV–Vis spectra. UV–Vis spectra showed the characteristic peaks of Ag in the UV–Vis spectra at 425 nm. Final products exhibited significant porosity and maximum swelling of 519.44%. The thermal stability of hydrogel increased with an increased percentage of (MFC-Ag)NC. Hydrogels exhibited significant antimicrobial inhibition against multidrug-resistant microorganisms, including Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yahia Lh (2015) History and applications of hydrogels. J Biomed Sci 04(02):1–23. https://doi.org/10.4172/2254-609X.100013

    Article  Google Scholar 

  2. Yang J, Gong C, Shi FK, Xie XM (2012) High strength of physical hydrogels based on poly(acrylic acid)-g-poly(ethylene glycol) methyl ether: Role of chain architecture on hydrogel properties. J Phys Chem B 116(39):12038–12047. https://doi.org/10.1021/jp303710d

    Article  CAS  PubMed  Google Scholar 

  3. García-Astrain C et al (2015) Biocompatible hydrogel nanocomposite with covalently embedded silver nanoparticles. Biomacromol 16(4):1301–1310. https://doi.org/10.1021/acs.biomac.5b00101

    Article  CAS  Google Scholar 

  4. Thoniyot P, Tan MJ, Karim AA, Young DJ, Loh XJ (2015) Nanoparticle–hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Adv Sci 2(1–2):1–13. https://doi.org/10.1002/advs.201400010

    Article  CAS  Google Scholar 

  5. Ahmed EM (2015) Hydrogel: Preparation, characterization, and applications: A review. J Adv Res 6(2):105–121. https://doi.org/10.1016/j.jare.2013.07.006

    Article  CAS  PubMed  Google Scholar 

  6. Oliveira RN et al (2013) Mechanical properties and in vitro characterization of polyvinyl alcohol-nano-silver hydrogel wound dressings. Interface Focus 4(1):20130049–20130049. https://doi.org/10.1098/rsfs.2013.0049

    Article  Google Scholar 

  7. Raho R et al (2020) Photo-assisted green synthesis of silver doped silk fibroin/carboxymethyl cellulose nanocomposite hydrogels for biomedical applications. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2019.110219

    Article  Google Scholar 

  8. Zhang H, Xia H, Zhao Y (2012) Poly (vinyl alcohol) hydrogel can autonomously self-heal. ACS Macro Lett. https://doi.org/10.1021/mz300451r

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hassan CM, Peppas NA (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Biopolym PVA Hydrogels, Anionic Polym Nanocomposites 153:37–65. https://doi.org/10.1007/3-540-46414-X_2

    Article  CAS  Google Scholar 

  10. Anjum S, Sharma A, Tummalapalli M, Joy J, Bhan S, Gupta B (2015) A novel route for the preparation of silver loaded polyvinyl alcohol nanogels for wound care systems. Int J Polym Mater Polym Biomater 64(17):894–905. https://doi.org/10.1080/00914037.2015.1030660

    Article  CAS  Google Scholar 

  11. Lu B et al (2017) One-pot assembly of microfibrillated cellulose reinforced PVA-borax hydrogels with self-healing and ph-responsive properties. ACS Sustain Chem Eng 5(1):948–956. https://doi.org/10.1021/acssuschemeng.6b02279

    Article  CAS  Google Scholar 

  12. Sinton SW (1987) Complexation chemistry of sodium borate with poly(vinyl alcohol) and small diols: A11B NMR study. Macromolecules 20(10):2430–2441. https://doi.org/10.1021/ma00176a018

    Article  CAS  Google Scholar 

  13. Sczostak A (2009) Cotton linters: An alternative cellulosic raw material. Macromol Symp 280(1):45–53. https://doi.org/10.1002/masy.200950606

    Article  CAS  Google Scholar 

  14. Lin HL, Liu YF, Yu TL, Liu WH, Rwei SP (2005) Light scattering and viscoelasticity study of poly(vinyl alcohol)-borax aqueous solutions and gels. Polymer (Guildf) 46(15):5541–5549. https://doi.org/10.1016/j.polymer.2005.04.074

    Article  CAS  Google Scholar 

  15. Zhang F, Wu J, Kang D, Zhang H (2013) Development of a complex hydrogel of hyaluronan and PVA embedded with silver nanoparticles and its facile studies on Escherichia coli. J Biomater Sci Polym Ed 24(12):1410–1425. https://doi.org/10.1080/09205063.2012.763109

    Article  CAS  PubMed  Google Scholar 

  16. Sirousazar ZMHM, Kokabi M (2011) Swelling behavior and structural characteristics of polyvinyl alcohol/montmorillonite nanocomposite hydrogels. J Appl Polym Sci 123:50–58. https://doi.org/10.1002/app

    Article  Google Scholar 

  17. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83. https://doi.org/10.1016/j.biotechadv.2008.09.002

    Article  CAS  PubMed  Google Scholar 

  18. Fu LH, Liu B, Meng LY, Ma MG (2016) Comparative study of cellulose/Ag nanocomposites using four cellulose types. Mater Lett 171:277–280. https://doi.org/10.1016/j.matlet.2016.02.118

    Article  CAS  Google Scholar 

  19. P. Mohamadinia, “Preparation And Characterization of Sodium Alginate / Acrylic Acid Composite Hydrogels Conjugated To Silver Nanoparticles As An Antibiotic Delivery System,” Res. Sq., pp. 1–13, 2021, [Online]. Available: https://www.researchsquare.com/article/rs-429387/v1.

  20. Song S et al (2021) Antibacterial polyvinyl alcohol/bacterial cellulose/nano-silver hydrogels that effectively promote wound healing. Mater Sci Eng C 126:112171. https://doi.org/10.1016/j.msec.2021.112171

    Article  CAS  Google Scholar 

  21. Wang L, Periyasami G, Aldalbahi A, Fogliano V (2021) The antimicrobial activity of silver nanoparticles biocomposite films depends on the silver ions release behaviour. Food Chem 359:129859. https://doi.org/10.1016/j.foodchem.2021.129859

    Article  CAS  PubMed  Google Scholar 

  22. Abbate F, Santos D, Iulianelli GCV, Inês M, Tavares B (2016) The use of cellulose nanofillers in obtaining polymer nanocomposites: properties, processing, and applications. Mater Sci Appl 7(7):257–294. https://doi.org/10.4236/msa.2016.75026

    Article  CAS  Google Scholar 

  23. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose 17(3):459–494. https://doi.org/10.1007/s10570-010-9405-y

    Article  CAS  Google Scholar 

  24. Ovalle-Serrano SA, Díaz-Serrano LA, Hong C, Hinestroza JP, Blanco-Tirado C, Combariza MY (2020) Synthesis of cellulose nanofiber hydrogels from fique tow and Ag nanoparticles. Cellulose 27(17):9947–9961. https://doi.org/10.1007/s10570-020-03527-6

    Article  CAS  Google Scholar 

  25. M. F. Rosa et al., “EXTRAÇÃO E CARACTERIZAÇÃO DE ‘WHISKERS’ DE CELULOSE DE FIBRA DE COCO,” Congr. Bras. Eng. e Ciência dos Mater., pp. 4050–4058, 2008, [Online]. Available: https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/28217/1/Proci08.00139.pdf.

  26. Shin JU, Gwon J, Lee SY, Yoo HS (2018) Silver-incorporated nanocellulose fibers for antibacterial hydrogels. ACS Omega 3(11):16150–16157. https://doi.org/10.1021/acsomega.8b02180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145(1–2):83–96. https://doi.org/10.1016/j.cis.2008.09.002

    Article  CAS  PubMed  Google Scholar 

  28. Yang KK, Wang XL, Wang YZ (2007) Progress in nanocomposite of biodegradable polymer. J Ind Eng Chem 13(4):485–500

    CAS  Google Scholar 

  29. Cobos M, De-La-Pinta I, Quindós G, Fernández MJ, Fernández MD (2020) alcohol ) / graphene oxide – silver nanoparticles. Polymers (Basel) 12(723):1–18

    Google Scholar 

  30. Fan L, Zhang H, Gao M, Zhang M, Liu P, Liu X (2019) Cellulose nanocrystals/silver nanoparticles: In-situ preparation and application in PVA films. Holzforschung 74(5):523–528. https://doi.org/10.1515/hf-2018-0251

    Article  CAS  Google Scholar 

  31. Sarwar MS, Niazi MBK, Jahan Z, Ahmad T, Hussain A (2018) Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging. Carbohydr Polym 184:453–464. https://doi.org/10.1016/j.carbpol.2017.12.068

    Article  CAS  PubMed  Google Scholar 

  32. Nain Z, Islam MA, Minnatul Karim M (2019) Antibiotic resistance profiling and molecular phylogeny of biofilm forming bacteria from clinical and non-clinical environment in southern part of Bangladesh”. Int J Enteric Pathog. https://doi.org/10.15171/ijep.2019.10

    Article  Google Scholar 

  33. Rahman M, Khan G, Uddin M, Razzaque S, Alam M (2016) Chemical treatments of cotton linter cellulose fiber for composite application. Am Chem Sci J 16(4):1–7. https://doi.org/10.9734/acsj/2016/28730

    Article  CAS  Google Scholar 

  34. Gomes A, Goda K, Ohgi J (2004) Effects of alkali treatment to reinforcement on tensile properties of Curaua fiber green composites. JSME Int Journal Ser A Solid Mech Mater Eng. https://doi.org/10.1299/jsmea.47.541

    Article  Google Scholar 

  35. Butterworth E (1939) The bleaching of cellulose, with special reference to bast fibres. J Soc Dvers Colour 55(12):589–596

    Article  CAS  Google Scholar 

  36. Li W, Wang R, Liu S (2011) Nanocrystalline cellulose prepared from softwood kraft pulp via ultrasonic-assisted acid hydrolysis. BioResources 6(4):4271–4281. https://doi.org/10.15376/biores.6.4.4271-4281

    Article  CAS  Google Scholar 

  37. G. M. A. Khan et al., “Mechanical, thermal and morphological studies of microfibrillated jute/PLA biocomposites,” Indian J Fibre Text Res, vol. 42, no. 3, 2017.

  38. Priya SY, Khan GMA, Uddin MH, Haque MA, Islam MS, Gafur MA (2015) Characterization of micro-fibrillated cellulose produced from sawmill wastage: crystallinity and thermal properties. Am Chem Sci J 9(1):1–8. https://doi.org/10.9734/ACSj/2015/19752

    Article  CAS  Google Scholar 

  39. Spoljaric S, Salminen A, Luong ND, Seppälä J (2014) Stable, self-healing hydrogels from nanofibrillated cellulose, poly(vinyl alcohol) and borax via reversible crosslinking. Eur Polym J 56(1):105–117. https://doi.org/10.1016/j.eurpolymj.2014.03.009

    Article  CAS  Google Scholar 

  40. Magaldi S et al (2004) Well diffusion for antifungal susceptibility testing. Int J Infect Dis 8(1):39–45. https://doi.org/10.1016/j.ijid.2003.03.002

    Article  CAS  PubMed  Google Scholar 

  41. National Committee for Clinical Laboratory Standards, Performance Standards for Antimicrobial Disk Susceptibility Tests, Fifth Edit. Villanova, PA, USA: Approved Standard NCCLS Publication M2-A5, 1993.

  42. Al Masud MA et al (2021) Green synthesis of silk sericin-embedded silver nanoparticles and their antibacterial application against multidrug-resistant pathogens. J Genet Eng Biotechnol. https://doi.org/10.1186/s43141-021-00176-5

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang X, Sun H, Tan S, Gao J, Fu Y, Liu Z (2019) Hydrothermal synthesis of Ag nanoparticles on the nanocellulose and their antibacterial study. Inorg Chem Commun 100:44–50. https://doi.org/10.1016/j.inoche.2018.12.012

    Article  CAS  Google Scholar 

  44. Biao L et al (2017) Synthesis, characterization and antibacterial study on the chitosan-functionalized Ag nanoparticles. Mater Sci Eng C 76:73–80. https://doi.org/10.1016/j.msec.2017.02.154

    Article  CAS  Google Scholar 

  45. Kwon G-J et al (2020) Adsorption characteristics of Ag nanoparticles on cellulose nanofibrils with different chemical compositions. Polymers (Basel) 12(1):164. https://doi.org/10.3390/polym12010164

    Article  CAS  Google Scholar 

  46. Suflet DM, Chitanu GC, Popa VI (2006) Phosphorylation of polysaccharides: New results on synthesis and characterisation of phosphorylated cellulose. React Funct Polym 66(11):1240–1249. https://doi.org/10.1016/j.reactfunctpolym.2006.03.006

    Article  CAS  Google Scholar 

  47. Uesu NY, Pineda EAG, Hechenleitner AAW (2000) Microcrystalline cellulose from soybean husk: effects of solvent treatments on its properties as acetylsalicylic acid carrier. Int J Pharm 206(1–2):85–96. https://doi.org/10.1016/S0378-5173(00)00532-9

    Article  CAS  PubMed  Google Scholar 

  48. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues - Wheat straw and soy hulls. Bioresour Technol 99(6):1664–1671. https://doi.org/10.1016/j.biortech.2007.04.029

    Article  CAS  PubMed  Google Scholar 

  49. Kobayashi M, Kitaoka Y, Kobayashi M (1997) Complex formation of boric acids with DI-and TRI-carboxylic acids and poly (vinyl alcohol) in aqueous solutions. Macromol Symp 114(1):303–308

    Article  CAS  Google Scholar 

  50. Cui XF et al (2019) Water-retaining, tough and self-healing hydrogels and their uses as fire-resistant materials. Polym Chem 10(37):5151–5158. https://doi.org/10.1039/C9PY01015G

    Article  CAS  Google Scholar 

  51. Shenoy SL, Painter PC, Coleman MM (1999) The swelling and collapse of hydrogen bonded polymer gels. Polymer (Guildf) 40(17):4853–4863. https://doi.org/10.1016/S0032-3861(98)00699-5

    Article  CAS  Google Scholar 

  52. Wang D, Zhao S, Yin R, Li L, Lou Z, Shen G (2021) “Recent advanced applications of ion-gel in ionic-gated transistor”, npj Flex. Electron 5(1):13. https://doi.org/10.1038/s41528-021-00110-2

    Article  CAS  Google Scholar 

  53. Namazi H, Hasani M, Yadollahi M (2019) Antibacterial oxidized starch/ZnO nanocomposite hydrogel: synthesis and evaluation of its swelling behaviours in various pHs and salt solutions. Int J Biol Macromol 126:578–584

    Article  CAS  Google Scholar 

  54. Han J, Lei T, Wu Q (2013) Facile preparation of mouldable polyvinyl alcohol-borax hydrogels reinforced by well-dispersed cellulose nanoparticles: physical, viscoelastic and mechanical properties. Cellulose 20(6):2947–2958

    Article  CAS  Google Scholar 

  55. Liu J, Li Q, Su Y, Yue Q, Gao B, Wang R (2013) Synthesis of wheat straw cellulose-g-poly (potassium acrylate)/PVA semi-IPNs superabsorbent resin. Carbohydr Polym 94(1):539–546

    Article  CAS  Google Scholar 

  56. Sriupayo J, Supaphol P, Blackwell J, Rujiravanit R (2005) Preparation and characterization of α-chitin whisker-reinforced chitosan nanocomposite films with or without heat treatment. Carbohydr Polym 62(2):130–136. https://doi.org/10.1016/j.carbpol.2005.07.013

    Article  CAS  Google Scholar 

  57. Davies KJA (2000) Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life 50(4–5):279–289

    Article  CAS  Google Scholar 

  58. Quinteros MA, Aristizábal VC, Dalmasso PR, Paraje MG, Páez PL (2016) Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antimicrobial activity. Toxicol Vitr 36:216–223

    Article  CAS  Google Scholar 

Download references

Funding

The article was funded by Ministry of Science and Technology, Government of the People’s Republic of Bangladesh, 39.00.0000.09.06.79.2017/387/51 EAS, Md. Shamsul Alam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Shamsul Alam.

Ethics declarations

Conflict of interest

The authors declare not to have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, M.S., Al Foisal, J., Khan, G.M.A. et al. Microfibrillated Cellulose-Silver Nanocomposite Based PVA Hydrogels and Their Enhanced Physical, Mechanical and Antibacterial Properties. J Polym Environ 30, 2875–2887 (2022). https://doi.org/10.1007/s10924-022-02406-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02406-4

Keywords

Navigation