Skip to main content

Advertisement

Log in

High-Solid Loading Enzymatic Hydrolysis of Waste Office Paper for poly-3-hydroxybutyrate Production Through Simultaneous Saccharification and Fermentation

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Waste paper holds great potential as a substrate for the microbial production of bioplastic (Poly-3-hydroxybutyrate (PHB)). This study aimed to produce PHB by utilizing office paper as a substrate using Cupriavidus necator through batch and fed-batch simultaneous saccharification and fermentation (SSF) approach. For the batch experiment, different loadings of shredded office paper (3, 5 and 10%) with two different pretreatments H2O2 (OPH) and H2O2 and Triton X-100 (OPTH) were carried out. For the fed-batch experiment, paper loading started with 3% and two more additions were made at 36 and 84 h. Both experiments were conducted at 30 °C, 200 rpm and pH 7 using 55.5 FPU/g of cellulase and 37.5 CBU/g of β-glucosidase with a fixed amount of nitrogen source. High PHB yield was observed with OPH in all loadings, though the OPHT showed a better hydrolysis. Maximum PHB yield (4.27 g/L) was achieved with 10% OP on the sixth day of fermentation in batch SSF. Whereas, maximum PHB yield (4.19 g/L) was obtained within a shorter time (66 h)with OPH in the fed-batch experiment. The extracted PHB showed well-matched characteristic features to the standard PHB. Finally, this study proves the feasibility of employing the SSF process for PHB production using waste paper as an alternative approach to overcome the shortcoming of the separate hydrolysis and fermentation (SHF) process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Availability of data and material (data transparency)

Not applicable.

Code Availability

Not applicable.

References

  1. Ma Y, Hummel M, Määttänen M et al (2016) Upcycling of waste paper and cardboard to textiles. Green Chem 18:858–866. https://doi.org/10.1039/C5GC01679G

    Article  CAS  Google Scholar 

  2. Rodriguez C, Alaswad A, El-Hassan Z, Olabi AG (2017) Mechanical pretreatment of waste paper for biogas production. Waste Manag 68:157–164. https://doi.org/10.1016/j.wasman.2017.06.040

    Article  CAS  PubMed  Google Scholar 

  3. Annamalai N, Al-Battashi H, Al-Bahry S, Sivakumar N (2018) Biorefinery production of poly-3-hydroxybutyrate using waste office paper hydrolysate as feedstock for microbial fermentation. J Biotechnol 265:25–30. https://doi.org/10.1016/j.jbiotec.2017.11.002

    Article  CAS  Google Scholar 

  4. Ma Y, Hummel M, Kontro I, Sixta H (2018) High performance man-made cellulosic fibres from recycled newsprint. Green Chem. https://doi.org/10.1039/c7gc02896b

    Article  Google Scholar 

  5. Sangkharak K (2011) Optimization of enzymatic hydrolysis for ethanol production by simultaneous saccharification and fermentation of wastepaper. Waste Manag Res 29:1134–1144. https://doi.org/10.1177/0734242X10387656

    Article  CAS  PubMed  Google Scholar 

  6. Adu C, Jolly M, Thakur VK (2018) Exploring new horizons for paper recycling: A review of biomaterials and biorefinery feedstocks derived from wastepaper. Curr Opin Green Sustain Chem 13:21–26. https://doi.org/10.1016/j.cogsc.2018.03.003

    Article  Google Scholar 

  7. Al Azkawi AS, Sivakumar N, Al Bahry S (2018) Bioprocessing of cardboard waste for cellulase production. Biomass Convers Biorefinery 8:1–10. https://doi.org/10.1007/s13399-018-0309-7

    Article  CAS  Google Scholar 

  8. Al Battashi H, Al-Kindi S, Gupta VK, Sivakumar N (2020) Polyhydroxyalkanoate (PHA) Production Using Volatile Fatty Acids Derived from the Anaerobic Digestion of Waste Paper. J Polym Environ. https://doi.org/10.1007/s10924-020-01870-0

    Article  Google Scholar 

  9. Wang L, Templer R, Murphy RJ (2012) High-solids loading enzymatic hydrolysis of waste papers for biofuel production. Appl Energy 99:23–31. https://doi.org/10.1016/j.apenergy.2012.03.045

    Article  CAS  Google Scholar 

  10. da Mota HG, Gouveia ER (2016) Improvement in Enzymatic Hydrolysis of Waste Office Paper with Chemical Pretreatment and Enzyme Loading Reduced. Waste Biomass Valoriz 7:507–512. https://doi.org/10.1007/s12649-015-9475-z

    Article  CAS  Google Scholar 

  11. Bilal M, Asgher M, Iqbal HM, Ramzan M (2017) Enhanced bio-ethanol production from old newspapers waste through alkali and enzymatic delignification. Waste Biomass Valoriz 8:2271–2281

    Article  CAS  Google Scholar 

  12. Annamalai N, Al Battashi H, Anu SN et al (2018) Enhanced Bioethanol Production from Waste Paper Through Separate Hydrolysis and Fermentation. Waste and Biomass Valorization 1–11

  13. Al-Battashi H, Annamalai N, Al-Kindi S et al (2019) Production of bioplastic (poly-3-hydroxybutyrate) using waste paper as a feedstock: Optimization of enzymatic hydrolysis and fermentation employing Burkholderia sacchari. J Clean Prod 214:236–247. https://doi.org/10.1016/j.jclepro.2018.12.239

    Article  CAS  Google Scholar 

  14. Chang K-L, Chen X-M, Wang X-Q et al (2017) Impact of surfactant type for ionic liquid pretreatment on enhancing delignification of rice straw. Bioresour Technol 227:388–392. https://doi.org/10.1016/j.biortech.2016.11.085

    Article  CAS  PubMed  Google Scholar 

  15. Qing Q, Yang B, Wyman CE (2010) Impact of surfactants on pretreatment of corn stover. Bioresour Technol 101:5941–5951

    Article  CAS  Google Scholar 

  16. Kádár Z, Szengyel Z, Réczey K (2004) Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Ind Crops Prod 20:103–110. https://doi.org/10.1016/j.indcrop.2003.12.015

    Article  CAS  Google Scholar 

  17. Marques S, Alves L, Roseiro JC, Gírio FM (2008) Conversion of recycled paper sludge to ethanol by SHF and SSF using Pichia stipitis. Biomass Bioenergy 32:400–406. https://doi.org/10.1016/j.biombioe.2007.10.011

    Article  CAS  Google Scholar 

  18. Alkasrawi M, Eriksson T, Börjesson J et al (2003) The effect of Tween-20 on simultaneous saccharification and fermentation of softwood to ethanol. Enzyme Microb Technol 33:71–78. https://doi.org/10.1016/S0141-0229(03)00087-5

    Article  CAS  Google Scholar 

  19. de Jesus Assis D, Gomes GVP, da Cunha Pascoal DR et al (2016) Simultaneous Biosynthesis of Polyhydroxyalkanoates and Extracellular Polymeric Substance (EPS) from Crude Glycerol from Biodiesel Production by Different Bacterial Strains. Appl Biochem Biotechnol 180:1110–1127. https://doi.org/10.1007/s12010-016-2155-z

    Article  CAS  PubMed  Google Scholar 

  20. Al-Battashi H, Annamalai N, Sivakumar N et al (2019) Lignocellulosic biomass (LCB): a potential alternative biorefinery feedstock for polyhydroxyalkanoates production. Rev Environ Sci Bio/Technology 18:183–205. https://doi.org/10.1007/s11157-018-09488-4

    Article  CAS  Google Scholar 

  21. Al-Battashi H, Sivakumar N (2020) Chapter 17-Bioenergy technology for integrated production of polyhydroxybutyrate/bioplastic. In: Gupta VK, Treichel H, Kuhad RC, Rodriguez-Cout S (eds) Recent Developments in Bioenergy Research. Elsevier, pp 325–347

  22. Pillai AB, Kumar AJ, Thulasi K, Kumarapillai H (2017) Evaluation of short-chain-length polyhydroxyalkanoate accumulation in Bacillus aryabhattai. brazilian J Microbiol 48:451–460

    Article  CAS  Google Scholar 

  23. Zhou W, Gong Z, Zhang L et al (2017) Feasibility of lipid production from waste paper by the oleaginous yeast Cryptococcus curvatus. BioResources. https://doi.org/10.15376/biores.12.3.5249-5263

  24. Dahman Y, Ugwu CU (2014) Production of green biodegradable plastics of poly(3-hydroxybutyrate) from renewable resources of agricultural residues. Bioprocess Biosyst Eng 37:1561–1568. https://doi.org/10.1007/s00449-014-1128-2

    Article  CAS  PubMed  Google Scholar 

  25. García-Torreiro M, López-Abelairas M, Lu-Chau TA, Lema JM (2016) Production of poly(3-hydroxybutyrate) by simultaneous saccharification and fermentation of cereal mash using Halomonas boliviensis. Biochem Eng J 114:140–146. https://doi.org/10.1016/j.bej.2016.07.002

    Article  CAS  Google Scholar 

  26. Zhang Y, Sun W, Wang H et al (2013) Polyhydroxybutyrate production from oil palm empty fruit bunch using Bacillus megaterium R11 Bioresour Technol 147:307–314. https://doi.org/10.1016/j.biortech.2013.08.029

  27. Masood F (2017) Polyhydroxyalkanoates in the Food Packaging Industry. Nanotechnology Applications in Food. Flavor, Stability, Nutrition and Safety

  28. Nair AS, Al-Battashi H, Al-Akzawi A et al (2018) Waste office paper: A potential feedstock for cellulase production by a novel strain Bacillus velezensis ASN1. Waste Manag. https://doi.org/10.1016/j.wasman.2018.08.014

  29. Allison GG, Thain SC, Morris P et al (2009) Quantification of hydroxycinnamic acids and lignin in perennial forage and energy grasses by Fourier-transform infrared spectroscopy and partial least squares regression. Bioresour Technol 100:1252–1261. https://doi.org/10.1016/j.biortech.2008.07.043

    Article  CAS  PubMed  Google Scholar 

  30. Jahan MS, Mun SP (2007) Characteristics of Dioxane Lignins Isolated at Different Ages of Nalita Wood (Trema orientalis). J Wood Chem Technol 27:83–98. https://doi.org/10.1080/02773810701486865

    Article  CAS  Google Scholar 

  31. Zhang M, Qi W, Liu R et al (2010) Fractionating lignocellulose by formic acid: Characterization of major components. Biomass Bioenergy 34:525–532. https://doi.org/10.1016/j.biombioe.2009.12.018

    Article  CAS  Google Scholar 

  32. Sills DL, Gossett JM (2012) Using FTIR to predict saccharification from enzymatic hydrolysis of alkali-pretreated biomasses. Biotechnol Bioeng 109:353–362. https://doi.org/10.1002/bit.23314

    Article  CAS  PubMed  Google Scholar 

  33. Sharma S, Sharma V, Kuila A (2016) Cellulase production using natural medium and its application on enzymatic hydrolysis of thermo chemically pretreated biomass. 3 Biotech 6:139. https://doi.org/10.1007/s13205-016-0465-z

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li X, Yu H, Sun D et al (2015) Comparative Study of Enzymatic Hydrolysis Properties of Pulp Fractions from Waste Paper. BioResources 10:3818–3830. https://doi.org/10.15376/biores.10.3.3818-3830

    Article  CAS  Google Scholar 

  35. Barlaz MA (2006) Forest products decomposition in municipal solid waste landfills. In: Waste Management

  36. Chu KH, Feng X (2013) Enzymatic conversion of newspaper and office paper to fermentable sugars. Process Saf Environ Prot. https://doi.org/10.1016/j.psep.2011.12.003

    Article  Google Scholar 

  37. Guerfali M, Saidi A, Gargouri A, Belghith H (2015) Enhanced enzymatic hydrolysis of waste paper for ethanol production using separate saccharification and fermentation. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-014-1243-1

    Article  PubMed  Google Scholar 

  38. Qu X-S, Zhu M-J (2016) Investigation on the Enhancing Biological Saccharification of Cellulose by Clostridium thermocellum with Triton X-100 Addition. J Biobased Mater Bioenergy 10:362–369. https://doi.org/10.1166/jbmb.2016.1614

    Article  CAS  Google Scholar 

  39. Qu X-S, Hu B-B, Zhu M-J (2017) Enhanced saccharification of cellulose and sugarcane bagasse by Clostridium thermocellum cultures with Triton X-100 and β-glucosidase/Cellic®CTec2 supplementation. RSC Adv 7:21360–21365. https://doi.org/10.1039/C7RA02477K

    Article  CAS  Google Scholar 

  40. Chen L, Fu S (2013) Enhanced cellulase hydrolysis of eucalyptus waste fibers from pulp mill by Tween80-assisted ferric chloride pretreatment. J Agric Food Chem 61:3293–3300. https://doi.org/10.1021/jf400062e

    Article  CAS  PubMed  Google Scholar 

  41. Jin W, Chen L, Hu M et al (2016) Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed. Appl Energy 175:82–90

    Article  CAS  Google Scholar 

  42. Putro JN, Soetaredjo FE, Lin S-Y et al (2016) Pretreatment and conversion of lignocellulose biomass into valuable chemicals. RSC Adv 6:46834–46852. https://doi.org/10.1039/C6RA09851G

    Article  CAS  Google Scholar 

  43. Kleingesinds EK, José ÁHM, Brumano LP et al (2018) Intensification of bioethanol production by using Tween 80 to enhance dilute acid pretreatment and enzymatic saccharification of corncob. Ind Crops Prod 124:166–176. https://doi.org/10.1016/j.indcrop.2018.07.037

    Article  CAS  Google Scholar 

  44. Yu J, Stahl H (2008) Microbial utilization and biopolyester synthesis of bagasse hydrolysates. Bioresour Technol. https://doi.org/10.1016/j.biortech.2008.03.071

    Article  PubMed  Google Scholar 

  45. Radhika D, Murugesan AG (2012) Bioproduction, statistical optimization and characterization of microbial plastic (poly 3-hydroxy butyrate) employing various hydrolysates of water hyacinth (Eichhornia crassipes) as sole carbon source. Bioresour Technol. https://doi.org/10.1016/j.biortech.2012.06.107

    Article  PubMed  Google Scholar 

  46. Kim HS, Oh YH, Jang YA et al (2016) Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution. Microb Cell Fact. https://doi.org/10.1186/s12934-016-0495-6

    Article  PubMed  PubMed Central  Google Scholar 

  47. Azizi N, Najafpour G, Younesi H (2017) Acid pretreatment and enzymatic saccharification of brown seaweed for polyhydroxybutyrate (PHB) production using Cupriavidus necator. Int J Biol Macromol 101:1029–1040. https://doi.org/10.1016/j.ijbiomac.2017.03.184

    Article  CAS  PubMed  Google Scholar 

  48. Heng K-S, Hatti-Kaul R, Adam F et al (2017) Conversion of rice husks to polyhydroxyalkanoates (PHA) via a three-step process: optimized alkaline pretreatment, enzymatic hydrolysis, and biosynthesis by Burkholderia cepaciaUSM (JCM 15050). J Chem Technol Biotechnol 92:100–108. https://doi.org/10.1002/jctb.4993

    Article  CAS  Google Scholar 

  49. Hablot E, Bordes P, Pollet E, Avérous L (2008) Thermal and thermo-mechanical degradation of poly(3-hydroxybutyrate)-based multiphase systems. Polym Degrad Stab 93:413–421. https://doi.org/10.1016/j.polymdegradstab.2007.11.018

    Article  CAS  Google Scholar 

  50. Pradhan S, Borah AJ, Poddar MK et al (2017) Microbial production, ultrasound-assisted extraction and characterization of biopolymer polyhydroxybutyrate (PHB) from terrestrial (P. hysterophorus) and aquatic (E. crassipes) invasive weeds. Bioresour Technol 242:304–310. https://doi.org/10.1016/j.biortech.2017.03.117

    Article  CAS  PubMed  Google Scholar 

  51. Liu X-J, Zhang J, Hong P-H, Li Z-J (2016) Microbial production and characterization of poly-3-hydroxybutyrate by Neptunomonas antarctica. PeerJ 4:e2291. https://doi.org/10.7717/peerj.2291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bayarı S, Severcan F (2005) FTIR study of biodegradable biopolymers: P(3HB), P(3HB-co-4HB) and P(3HB-co-3HV). J Mol Struct 744–747:529–534. https://doi.org/10.1016/j.molstruc.2004.12.029

    Article  CAS  Google Scholar 

  53. Zhou Y, Huang Z, Diao X et al (2015) Characterization of the effect of REC on the compatibility of PHBH and PLA. Polym Test 42:17–25. https://doi.org/10.1016/j.polymertesting.2014.12.014

    Article  CAS  Google Scholar 

  54. Saratale GD, Oh M-K (2015) Characterization of poly-3-hydroxybutyrate (PHB) produced from Ralstonia eutropha using an alkali-pretreated biomass feedstock. Int J Biol Macromol 80:627–635. https://doi.org/10.1016/j.ijbiomac.2015.07.034

    Article  CAS  PubMed  Google Scholar 

  55. Salgaonkar BB, Bragança JM (2017) Utilization of Sugarcane Bagasse by Halogeometricum borinquense Strain E3 for Biosynthesis of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Bioengineering 4:50. https://doi.org/10.3390/bioengineering4020050

    Article  CAS  PubMed Central  Google Scholar 

  56. Saratale RG, Saratale GD, Cho SK et al (2019) Pretreatment of kenaf (Hibiscus cannabinus L.) biomass feedstock for polyhydroxybutyrate (PHB) production and characterization. Bioresour Technol 282:75–80. https://doi.org/10.1016/j.biortech.2019.02.083

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the help extended by Dr. Jamal Al-Sabahi, CAMS, SQU, for the HPLC analysis, Nanotechnology chair, SQU, for FTIR/TGA analysis, Department of Physics, SQU for SEM and CAARU, SQU for GC-FID, XRD and NMR analysis.

Funding

The authors gratefully acknowledge the Research Council (TRC), Oman, for the financial support (ORG/EBR/14/003).

Author information

Authors and Affiliations

Authors

Contributions

Huda Al Battashi: designed the experiment, carried out the experimental work and prepared the original draft of the MS. Nallusamy Sivakumar: conceptualization of the work, analyzed the data, supervised the research and finalized the MS.

Corresponding author

Correspondence to Nallusamy Sivakumar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Battashi, H., Sivakumar, N. High-Solid Loading Enzymatic Hydrolysis of Waste Office Paper for poly-3-hydroxybutyrate Production Through Simultaneous Saccharification and Fermentation. J Polym Environ 30, 3045–3054 (2022). https://doi.org/10.1007/s10924-022-02392-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02392-7

Keywords