Skip to main content
Log in

Antioxidant and Cytotoxic Activities of Exopolysaccharides from Alcaligenes faecalis Species Isolated from the Marine Environment of Mauritius

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Extracellular polysaccharides (EPS) of microbial origin are polymers with great potential for research and industrial applications. In this study, a sulphated EPS from Alcaligenes faecalis, previously isolated from Mauritius seawater, was investigated for its antioxidant potential using DPPH (1,1-diphenyl-2-picrylhydrazyl) and ferric reducing capacity assays. The EPS was then further tested for cytotoxicity against five different cell lines namely HepG2, A549, CaSki, HeLa and C33A by incubating them with different concentrations of EPS before assessing cell viability using the MTT assay. In the absence of significant cytotoxic activity, light microscopic observations as well as immunoflurorescent staining were also used to observe any EPS-induced effects on the cells. Finally, the average molecular weight of the polysaccharide was determined by Size-Exclusion Chromatography. The results indicated that the EPS, a 55 KDa polymer, had low ferric reducing capacity but showed up to 70.5% DPPH scavenging activity at the highest EPS concentration (1 mg/ml). In terms of cytotoxicity, HepG2 was the most susceptible among the cell lines, followed by A549, with IC50 values of 128.2 µg/ml and 654.4 µg/ml respectively. Although CaSki, HeLa and C33A were more resistant, microscopic observations showed that the EPS did exert some inhibitory effects on their growth, with C33A showing higher inhibition probably due to the absence of viral proteins as was the case for CaSki and HeLa. These results not only suggest that EPS from A. faecalis have the potential to be considered as antioxidant and cytotoxic compounds but also that they can be further studied for their biotechnological value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Falzone L, Salomone S, Libra M (2018) Evolution of cancer pharmacological treatments at the turn of the third millennium. Front Pharmacol 9:1300. https://doi.org/10.3389/fphar.2018.01300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cooper GM (2000) The cell: a molecular approach, 2nd edn, Sunderland (MA), Sinauer Associates. ISBN-10: 0-87893-106-6

  3. Colditz GA, Wolin KY, Gehlert S (2012) Applying what we know to accelerate cancer prevention. Transl Med Sci. https://doi.org/10.1126/scitranslmed.3003218

    Article  Google Scholar 

  4. Sherwood JT, Brock MV (2007) Lung cancer: new surgical approaches. Respirology 12(3):326–332. https://doi.org/10.1111/j.1440-1843.2007.01083.x

    Article  PubMed  Google Scholar 

  5. Arruebo M, Vilaboa N, Sáez-Gutierrez B, Lambea J, Tres A, Valladares M, González-Fernández A (2011) Assessment of the evolution of cancer treatment therapies. Cancers 3(3):3279–3330. https://doi.org/10.3390/cancers3033279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Burton AW, Fanciullo GJ, Beasley RD, Fisch MJ (2007) Chronic pain in the cancer survivor: a new frontier. Pain Med 8(2):189–198. https://doi.org/10.1111/j.1526-4637.2006.00220.x

    Article  PubMed  Google Scholar 

  7. Zheng Y, Yang H, Wang H, Kang K, Zhang W, Ma G, Du S (2019) Fluorescence-guided surgery in cancer treatment: current status and future perspectives. Ann Transl Med. https://doi.org/10.21037/atm.2019.01.26

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chen Z, Zhang P, Xu Y, Yan J, Liu Z, Lau WB, Lau B, Li Y, Zhao X, Wei Y, Zhou S (2019) Surgical stress and cancer progression: the twisted tango. Mol Cancer 18:132. https://doi.org/10.1186/s12943-019-1058-3

    Article  PubMed  PubMed Central  Google Scholar 

  9. Majano BS, Di Girolamo C, Rachet B, Maringe C, Guren MG, Glimelius B, Iversen LH, Schnell EA, Lundqvist K, Christensen J, Morris M, Coleman MP, Walters S (2019) Surgical treatment and survival from colorectal cancer in Denmark, England, Norway, and Sweden: a population-based study. Lancet Oncol 20(1):74–87. https://doi.org/10.1016/S1470-2045(18)30646-6

    Article  Google Scholar 

  10. O’Donnell JS, Hoefsmit EP, Smyth MJ, Blank CU, Teng MWL (2019) The promise of neoadjuvant immunotherapy and surgery for cancer treatment. Clin Cancer Res 25(19):5743–5751. https://doi.org/10.1158/1078-0432.CCR-18-2641

    Article  CAS  PubMed  Google Scholar 

  11. Nurgali K, Jagoe RT, Abalo R (2018) Editorial: adverse effects of cancer chemotherapy: anything new to improve tolerance and reduce sequelae? Front Pharmacol 9:245. https://doi.org/10.3389/fphar.2018.00245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chui PL (2019) Cancer- and chemotherapy-related symptoms and the use of complementary and alternative medicine. Asia Pac J Oncol Nurs 6(1):4–6. https://doi.org/10.4103/apjon.apjon_51_18

    Article  PubMed  PubMed Central  Google Scholar 

  13. Brown SB, Hankinson SE (2015) Endogenous estrogens and the risk of breast, endometrial, and ovarian cancers. Steroids 99(Pt A):8–10. https://doi.org/10.1016/j.steroids.2014.12.013

    Article  CAS  PubMed  Google Scholar 

  14. Baskar R, Lee KA, Yeo R, Yeoh KW (2012) Cancer and radiation therapy: current advances and future directions. Int J Med Sci 9(3):193–199. https://doi.org/10.7150/ijms.3635

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mohan G, Hamna ATP, Jijo AJ, Devi SKM, Narayanasamy A, Vellingiri B (2019) Recent advances in radiotherapy and its associated side effects in cancer—a review. J Basic Appl Zoo 80:14. https://doi.org/10.1186/s41936-019-0083-5

    Article  Google Scholar 

  16. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75(3):311–335. https://doi.org/10.1021/np200906s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cragg GM, Pezzuto JM (2016) Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med Princ Pract 25(suppl 2):41–59. https://doi.org/10.1159/000443404

    Article  PubMed  Google Scholar 

  18. Debbab A, Aly AH, Lin WH, Proksch P (2010) Bioactive compounds from marine bacteria and fungi. Microb Biotechnol 3(5):544–563. https://doi.org/10.1111/j.1751-7915.2010.00179.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ahmed MM, Mahmoud MG, Selim MS, El Awady ME (2018) Exopolysaccharide from marine Bacillus velezensis MHM3 induces apoptosis of human breast cancer MCF-7 cells through a mitochondrial pathway. Asian Pac J Cancer Prev 19:1957–1963. https://doi.org/10.22034/APJCP.2018.19.7.1957

    Article  Google Scholar 

  20. Asker MS, El Sayed OH, Mahmoud MG, Yahya SM, Mohamed SS, Selim MS, El Awady MS, Abdelnasser SM, Abo Elsoud MM (2018) Production of exopolysaccharides from novel marine bacteria and anticancer activity against hepatocellular carcinoma cells (HepG2). Bull Natl Res Cent 42:30. https://doi.org/10.1186/s42269-018-0032-3

    Article  Google Scholar 

  21. Rajoka MSR, Mehwish HM, Fang H, Padhiar AA, Zeng X, Khurshid M, He Z, Zhao L (2019) Characterization and anti-tumor activity of exopolysaccharide produced by Lactobacillus kefiri isolated from Chinese kefir grains. J Funct Foods 63:103588. https://doi.org/10.1016/j.jff.2019.103588

    Article  CAS  Google Scholar 

  22. Rajoka MSR, Jin M, Haobin Z, Li Q, Shao D, Jiang C, Huang Q, Yang H, Shi J, Hussain N (2018) Functional characterization and biotechnological potential of exopolysaccharide produced by Lactobacillus rhamnosus strains isolated from human breast milk. LWT 89:638–647. https://doi.org/10.1016/j.lwt.2017.11.034

    Article  CAS  Google Scholar 

  23. Rühmann B, Schmid J, Sieber V (2015) Methods to identify the unexplored diversity of microbial exopolysaccharides. Front Microbiol 6:565. https://doi.org/10.3389/fmicb.2015.00565

    Article  PubMed  PubMed Central  Google Scholar 

  24. Casillo A, Lanzetta R, Parrilli M, Corsaro MM (2018) Exopolysaccharides from marine and marine extremophilic bacteria: structures, properties, ecological roles and applications. Mar Drugs 16:69. https://doi.org/10.3390/md16020069

    Article  CAS  PubMed Central  Google Scholar 

  25. Chen YT, Yuan Q, Shan LT, Lin MA, Cheng DQ, Li CY (2013) Antitumor activity of bacterial exopolysaccharides from the endophyte Bacillus amyloliquefaciens sp. isolated from Ophiopogon japonicus. Oncol Lett 5(6):1787–1792. https://doi.org/10.3892/ol.2013.1284

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang L, Wang Y, Li Q, Tian K, Xu L, Liu G, Guo C (2019) Exopolysaccharide, isolated from a novel strain Bifidobacterium breve lw01 possess an anticancer effect on head and neck cancer – genetic and biochemical evidences. Front Microbiol 10:1044. https://doi.org/10.3389/fmicb.2019.01044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kawata K, Iwai A, Muramatsu D, Aoki S, Uchiyama H, Okabe M, Hayakawa S, Takaoka A, Miyazaki T (2015) Stimulation of macrophages with the β-glucan produced by aureobasidium pullulans promotes the secretion of tumor necrosis factor-related apoptosis inducing ligand (TRAIL). PLoS ONE 10(4):e0124809. https://doi.org/10.1371/journal.pone.0124809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. El-Deeb NM, Yassin AM, Al-Madboly LA, El-Hawiet A (2018) A novel purified Lactobacillus acidophilus 20079 exopolysaccharide, LA-EPS-20079, molecularly regulates both apoptotic and NF-κB inflammatory pathways in human colon cancer. Microb Cell Fact 17(1):29. https://doi.org/10.1186/s12934-018-0877-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Patten DA, Collett A (2013) Exploring the immunomodulatory potential of microbial-associated molecular patterns derived from the enteric bacterial microbiota. Microbiol 159:1535–1544. https://doi.org/10.1099/mic.0.064717-0

    Article  CAS  Google Scholar 

  30. Wang J, Wu T, Fang X, Min W, Yang Z (2018) Characterization and immunomodulatory activity of an exopolysaccharide produced by Lactobacillus plantarum JLK0142 isolated from fermented dairy tofu. Int J Biol Macromol 115:985–993. https://doi.org/10.1016/j.ijbiomac.2018.04.099

    Article  CAS  PubMed  Google Scholar 

  31. Saadat YR, Khosroushahi AY, Gargari BP (2019) A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohydr Polym 217:79–89. https://doi.org/10.1016/j.carbpol.2019.04.025

    Article  CAS  Google Scholar 

  32. Rajoka MSR, Wu Y, Mehwish HM, Bansal M, Zhao L (2020) Lactobacillus exopolysaccharides: new perspectives on engineering strategies, physiochemical functions, and immunomodulatory effects on host health. Trends Food Sci Technol 103:36–48. https://doi.org/10.1016/j.tifs.2020.06.003

    Article  CAS  Google Scholar 

  33. Raveendran S, Poulose AC, Yoshida Y, Maekawa T, Kumar DS (2013) Bacterial exopolysaccharide based nanoparticles for sustained drug delivery, cancer chemotherapy and bioimaging. Carbohyd Polym 91(1):22–32. https://doi.org/10.1016/j.carbpol.2012.07.079

    Article  CAS  Google Scholar 

  34. Sivakumar B, Aswathy RG, Sreejith R, Nagaoka Y, Iwai S, Suzuki M, Fukuda T, Hasumura T, Yoshida Y, Maekawa T, Sakthikumar DN (2014) Bacterial exopolysaccharide based magnetic nanoparticles: a versatile nanotool for cancer cell imaging, targeted drug delivery and synergistic effect of drug and hyperthermia mediated cancer therapy. J Biomed Nanotechnol 10(6):885–899. https://doi.org/10.1166/jbn.2014.1820

    Article  CAS  PubMed  Google Scholar 

  35. Mohamed SS, Selim MS, Mahmoud MG, Ibrahim MY, Ghazy EA (2019) Production, characterization, and antioxidant activities of bacterial exopolysaccharides extracted from petroleum oil water. Egypt Pharma J 18(1):42–52. https://doi.org/10.4103/epj.epj_36_18

    Article  Google Scholar 

  36. Andrew M, Jayaraman G (2020) Structural features of microbial exopolysaccharides in relation to their antioxidant activity. Carbohydr Res 487:107881. https://doi.org/10.1016/j.carres.2019.107881

    Article  CAS  PubMed  Google Scholar 

  37. Gandhi S, Abramov AY (2012) Mechanism of oxidative stress in neurodegeneration. Oxid Med Cell Longev. https://doi.org/10.1155/2012/428010

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ye Z, Zhang J, Townsend DM, Tew KD (2015) Oxidative stress, redox regulation and diseases of cellular differentiation. Biochim Biophys Acta 1850(8):1607–1621. https://doi.org/10.1016/j.bbagen.2014.11.010

    Article  CAS  PubMed  Google Scholar 

  39. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A (2017) Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev 2017:8416763. https://doi.org/10.1155/2017/8416763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Adwas AA, Elsayed ASI, Azab AE, Quwaydir FA (2019) Oxidative stress and antioxidant mechanisms in human body. J Appl Biotechnol Bioeng 6(1):43–47. https://doi.org/10.15406/jabb.2019.06.00173

    Article  Google Scholar 

  41. Hauck AK, Bernlohr DA (2016) Oxidative stress and lipotoxicity. J Lipid Res 57:1976–1986. https://doi.org/10.1194/jlr.R066597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Benattouche Z, Bouhadi D, Raho GB (2018) Antioxidant and antibacterial activities of exopolysaccharides produced by lactic acid bacteria isolated from yogurt. Int J Food Studies 7(2):30–37. https://doi.org/10.7455/ijfs/7.2.2018.a3

    Article  Google Scholar 

  43. Darwish AA, Al-Bar OAM, Yousef RH, Moselhy SS, Ahmed YM, Hakeem KR (2019) Production of antioxidant exopolysaccharide from Pseudomonas aeruginosa utilizing heavy oil as a solo carbon source. Phcog Res 11(4):378–383. https://doi.org/10.4103/pr.pr_40_19

    Article  CAS  Google Scholar 

  44. Patel S, Majumder A, Goyal A (2012) Potentials of exopolysaccharides from lactic acid bacteria. Int J Microbiol 52(1):3–12. https://doi.org/10.1007/s12088-011-0148-8

    Article  CAS  Google Scholar 

  45. Meybodi NM, Mohammadifar MA (2015) Microbial exopolysaccharides: a review of their function and application in food sciences. J Food Qual Hazards Control 2:112–117

    CAS  Google Scholar 

  46. Jin H, Jeong Y, Yoo S, Johnston TV, Ku S, Ji GE (2019) Isolation and characterization of high exopolysaccharide-producing Weissella confusa VP30 from young children’s feces. Microb Cell Fact 18:110. https://doi.org/10.1186/s12934-019-1158-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Aullybux AA, Puchooa D, Bahorun T, Jeewon R (2019) Phylogenetics and antibacterial properties of exopolysaccharides from marine bacteria isolated from Mauritius seawater. Ann Microbiol 69:957–972. https://doi.org/10.1007/s13213-019-01487-2

    Article  Google Scholar 

  48. Al-Nahas MO, Darwish MM, Ali AE, Amin MA (2011) Characterization of an exopolysaccharide-producing marine bacterium, isolate Pseudoalteromonas sp. AM Afr J Microbiol Res 5(22):3823–3831. https://doi.org/10.5897/AJMR11.757

    Article  CAS  Google Scholar 

  49. Garcia EJ, Oldoni TLC, Alencar SM, Reis A, Loguercio AD, Grande RHM (2012) Antioxidant activity by DPPH assay of potential solutions to be applied on bleached teeth. Braz Dent J 23(1):22–27. https://doi.org/10.1590/s0103-64402012000100004

    Article  PubMed  Google Scholar 

  50. El Jemli M, Kamal R, Marmouzi I, Zerrouki A, Cherrah Y, Alaoui K (2016) Radical-scavenging activity and ferric reducing ability of Juniperus thurifera (L.), J. oxycedrus (L.), J. phoenicea (L.) and Tetraclinis articulata (L.). Adv Pharmacol Sci 2016:6392656. https://doi.org/10.1155/2016/6392656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Di W, Zhang L, Yi H, Han X, Zhang Y, Xin L (2018) Exopolysaccharides produced by Lactobacillus strains suppress HT-29 cell growth via induction of G0/G1 cell cycle arrest and apoptosis. Oncol Lett 16(3):3577–3586. https://doi.org/10.3892/ol.2018.9129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  53. Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4

  54. R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 6 Jul 2021

  55. Kedare SB, Singh RP (2011) Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol 48(4):412–422. https://doi.org/10.1007/s13197-011-0251-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mathew S, Abraham TE, Zakaria ZA (2015) Reactivity of phenolic compounds towards free radicals under in vitro conditions. J Food Sci Technol 52(9):5790–5798. https://doi.org/10.1007/s13197-014-1704-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Csepregi K, Neugart S, Schreiner M, Hideg E (2016) Comparative evaluation of total antioxidant capacities of plant polyphenols. Molecules 21:208. https://doi.org/10.3390/molecules21020208

    Article  CAS  PubMed Central  Google Scholar 

  58. Sordon S, Popłoński J, Milczarek M, Stachowicz M, Tronina T, Kucharska AZ, Wietrzyk J, Huszcza E (2019) Structure-antioxidant-antiproliferative activity relationships of natural C7 and C7–C8 hydroxylated flavones and flavanones. Antioxidants (Basel) 8(7):210. https://doi.org/10.3390/antiox8070210

    Article  CAS  Google Scholar 

  59. Bendary E, Francis RR, Ali HMG, Sarwat MI, El Hady S (2013) Antioxidant and structure–activity relationships (SARs) of some phenolic and anilines compounds. Ann Agric Sci 58(2):173–181. https://doi.org/10.1016/j.aoas.2013.07.002

    Article  Google Scholar 

  60. Lin CL, Wang CC, Chang SC, Inbaraj BS, Chen BH (2009) Antioxidative activity of polysaccharide fractions isolated from Lycium barbarum Linnaeus. Int J Biol Macromol 45(2):146–151. https://doi.org/10.1016/j.ijbiomac.2009.04.014

    Article  CAS  PubMed  Google Scholar 

  61. Marinova E, Georgiev L, Totseva I, Seizova K, Milkova T (2013) Antioxidant activity and mechanism of action of some synthesised phenolic acid amides of aromatic amines. Czech J Food Sci 31(1):5–13. https://doi.org/10.17221/280/2011-CJFS

    Article  CAS  Google Scholar 

  62. Ma X, Sun X, Yu K, Gui B, Gui Q, Ouyang J (2017) Effect of content of sulfate groups in seaweed polysaccharides on antioxidant activity and repair effect of subcellular organelles in injured HK-2 cells. Oxid Med Cell Longev 2017:2542950. https://doi.org/10.1155/2017/2542950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rafiee SA, Farhoosh R, Sharif A (2018) Antioxidant activity of gallic acid as affected by an extra carboxyl group than pyrogallol in various oxidative environments. Eur J Lipid Sci Technol 120(11):1800319. https://doi.org/10.1002/ejlt.201800319

    Article  CAS  Google Scholar 

  64. Zhong Q, Wei B, Wang S, Ke S, Chen J, Zhang H, Wang H (2019) The antioxidant activity of polysaccharides derived from marine organisms: an overview. Mar Drugs 17(12):674. https://doi.org/10.3390/md17120674

    Article  CAS  PubMed Central  Google Scholar 

  65. Das TK, Wati MS, Fatima-Shad K (2014) Oxidative stress gated by fenton and haber weiss reactions and its association With Alzheimer’s disease. Arch Neurosci 2(3):e20078. https://doi.org/10.5812/archneurosci.20078

    Article  Google Scholar 

  66. Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 30(1):11–26. https://doi.org/10.1007/s12291-014-0446-0

    Article  CAS  PubMed  Google Scholar 

  67. Escárcega-González CE, Garza-Cervantes JA, Vázquez-Rodríguez A, Morones-Ramírez JR (2018) Bacterial exopolysaccharides as reducing and/or stabilizing agents during synthesis of metal nanoparticles with biomedical applications. Int J Polym Sci. https://doi.org/10.1155/2018/7045852

    Article  Google Scholar 

  68. Rizvi A, Khan MS (2019) Putative role of bacterial biosorbent in metal sequestration revealed by SEM–EDX and FTIR. Indian J Microbiol 59:246–249. https://doi.org/10.1007/s12088-019-00780-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shahidi F, Zhong Y (2015) Measurement of antioxidant activity. J Funct Foods 18(Part B):757–781. https://doi.org/10.1016/j.jff.2015.01.047

    Article  CAS  Google Scholar 

  70. Wu Z, Lu J, Wang X, Hu B, Ye H, Fan J, Abid M, Zeng X (2014) Optimization for production of exopolysaccharides with antitumor activity in vitro from Paecilomyces hepiali. Carbohydr Polym 99:226–234. https://doi.org/10.1016/j.carbpol.2013.08.010

    Article  CAS  PubMed  Google Scholar 

  71. Abdelnasser SM, Yahya SM, Mohamed WF, Asker MM, Abu Shady HM, Mahmoud MG, Gadallah MA (2017) Antitumor exopolysaccharides derived from novel marine bacillus: isolation, characterization aspect and biological activity. Asian Pac J Cancer Prev 18(7):1847–1854. https://doi.org/10.22034/APJCP.2017.18.7.1847

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sun N, Liu H, Liu S, Zhang X, Chen P, Li W, Xu X, Tian W (2018) Purification, preliminary structure and antitumor activity of exopolysaccharide produced by Streptococcus thermophilus CH9. Molecules 23:2898. https://doi.org/10.3390/molecules23112898

    Article  CAS  PubMed Central  Google Scholar 

  73. Yahya SM, Abdelnasser SM, Hamed AR, El Sayed OH, Asker MS (2019) Newly isolated marine bacterial exopolysaccharides enhance antitumor activity in HepG2 cells via affecting key apoptotic factors and activating toll like receptors. Mol Biol Rep 46:6231–6241. https://doi.org/10.1007/s11033-019-05061-6

    Article  CAS  PubMed  Google Scholar 

  74. Sefried S, Häring H, Weigert C, Eckstein SS (2018) Suitability of hepatocyte cell lines HepG2, AML12 and THLE-2 for investigation of insulin signalling and hepatokine gene expression. Open Biol 8(10):180147. https://doi.org/10.1098/rsob.180147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ruoß M, Damm G, Vosough M, Ehret L, Grom-Baumgarten C, Petkov M, Naddalin S, Ladurner R, Seehofer D, Nussler A, Sajadian S (2019) Epigenetic modifications of the liver tumor cell line HepG2 increase their drug metabolic capacity. Int J Mol Sci 20(2):347. https://doi.org/10.3390/ijms20020347

    Article  CAS  PubMed Central  Google Scholar 

  76. Parthiban K, Vignesh V, Thirumurugan R (2014) Characterization and in vitro studies on anticancer activity of exopolymer Bacillus thuringiensis S13. Afr J Biotechnol 13(21):2137–2144. https://doi.org/10.5897/AJB2014.13741

    Article  CAS  Google Scholar 

  77. Cao R, Jin W, Shan Y, Wang J, Liu G, Kuang S, Sun C (2018) Marine bacterial polysaccharide EPS11 inhibits cancer cell growth via blocking cell adhesion and stimulating Anoikis. Mar Drugs 16(3):85. https://doi.org/10.3390/md16030085

    Article  CAS  PubMed Central  Google Scholar 

  78. Hong JH, Jung HK (2014) Antioxidant and antitumor activities of β-glucan-rich exopolysaccharides with different molecular weight from Paenibacillus polymyxa JB115. J Korean Soc Appl Biol Chem 57(1):105–112. https://doi.org/10.1007/s13765-013-4252-9

    Article  CAS  Google Scholar 

  79. Cao W, Li XQ, Wang X, Fan HT, Zhang XN, Hou Y, Liu SB, Mei QB (2010) A novel polysaccharide, isolated from Angelica sinensis (Oliv.) Diels induces the apoptosis of cervical cancer HeLa cells through an intrinsic apoptotic pathway. Phytomed 17(8–9):598–605. https://doi.org/10.1016/j.phymed.2009.12.014

    Article  CAS  Google Scholar 

  80. Sungur T, Aslim B, Karaaslan C, Aktas B (2017) Impact of Exopolysaccharides (EPSs) of Lactobacillus gasseri strains isolated from human vagina on cervical tumor cells (HeLa). Anaerobe 47:137–144. https://doi.org/10.1016/j.anaerobe.2017.05.013

    Article  PubMed  Google Scholar 

  81. Zhao K, Jin M, Chen Q, Zheng PS (2015) Polysaccharides produced by Enterobacter cloacae induce apoptosis in cervical cancer cells. Int J Biol Macromol 72:960–964. https://doi.org/10.1016/j.ijbiomac.2014.09.047

    Article  CAS  PubMed  Google Scholar 

  82. Kilic G, Cardillo M, Ozdemirli M, Arun B (1999) Human papillomavirus 18 oncoproteins E6 and E7 enhance irradiation- and chemotherapeutic agent-induced apoptosis in p53 and Rb mutated cervical cancer cell lines. Eur J Gynaecol Oncol 20(3):167–171

    CAS  PubMed  Google Scholar 

  83. Xiao CY, Fu BB, Li ZY, Mushtaq G, Kamal MA, Li JH, Tang GC, Xiao SS (2015) Observations on the expression of human papillomavirus major capsid protein in HeLa cells. Cancer Cell Int 15:53. https://doi.org/10.1186/s12935-015-0206-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Xu F, Cao M, Shi Q, Chen H, Wang Y, Li X (2015) Integration of the full-length HPV16 genome in cervical cancer and Caski and Siha cell lines and the possible ways of HPV integration. Virus Genes 50(2):210–220. https://doi.org/10.1007/s11262-014-1164-7

    Article  CAS  PubMed  Google Scholar 

  85. Yim E, Park J (2005) The role of HPV E6 and E7 oncoproteins in HPV-associated cervical carcinogenesis. Cancer Res Treat 37(6):319–324. https://doi.org/10.4143/crt.2005.37.6.319

    Article  PubMed  PubMed Central  Google Scholar 

  86. DeFilippis RA, Goodwin EC, Wu L, DiMaio D (2003) Endogenous human papillomavirus E6 and E7 proteins differentially regulate proliferation, senescence, and apoptosis in HeLa cervical carcinoma cells. J Virol 77(2):1551–1563. https://doi.org/10.1128/jvi.77.2.1551-1563.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zilfou JT, Lowe SW (2009) Tumor Suppressive Functions of p53. Cold Spring Harb Perspect Biol 1(5):a001883. https://doi.org/10.1101/cshperspect.a001883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lee JE, Lee S, Lee H, Song YM, Lee K, Han MJ, Sung J, Ko G (2013) Association of the vaginal microbiota with human papillomavirus infection in a Korean twin cohort. PLoS ONE 8(5):e63514. https://doi.org/10.1371/journal.pone.0063514

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kyrgiou M, Mitra A, Moscicki AB (2017) Does the vaginal microbiota play a role in the development of cervical cancer? Transl Res 179:168–182. https://doi.org/10.1016/j.trsl.2016.07.004

    Article  PubMed  Google Scholar 

  90. Mitra A, MacIntyre DA, Marchesi JR, Lee YS, Bennett PR, Kyrgiou M (2016) The vaginal microbiota, human papillomavirus infection and cervical intraepithelial neoplasia: what do we know and where are we going next? Microbiome 4(1):58. https://doi.org/10.1186/s40168-016-0203-0

    Article  PubMed  PubMed Central  Google Scholar 

  91. Champer M, Wong AM, Champer J, Brito IL, Messer PW, Hou JY, Wright JD (2017) The role of the vaginal microbiome in gynaecological cancer. Int J Gynecol Obstet 125(3):309–315. https://doi.org/10.1111/1471-0528.14631

    Article  Google Scholar 

  92. Kovachev SM (2020) Cervical cancer and vaginal microbiota changes. Arch Microbiol 202(2):323–327. https://doi.org/10.1007/s00203-019-01747-4

    Article  CAS  PubMed  Google Scholar 

  93. Curty G, Costa RL, Siqueira JD, Meyrelles AI, Machado ES, Soares EA, Soares MA (2017) Analysis of the cervical microbiome and potential biomarkers from postpartum HIV-positive women displaying cervical intraepithelial lesions. Sci Rep 7(1):17364. https://doi.org/10.1038/s41598-017-17351-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Klein C, Gonzalez D, Samwel K, Kahesa C, Mwaiselage J, Aluthge N, Fernando S, West JT, Wood C, Angeletti PC (2019) Relationship between the cervical microbiome HIV status and precancerous lesions. MBio 10(1):e02785-e2818. https://doi.org/10.1128/mBio.02785-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yang J, Hu L, Cai T, Chen Q, Ma Q, Yang J, Meng C, Hong J (2018) Purification and identification of two novel antioxidant peptides from perilla (Perilla frutescens L. Britton) seed protein hydrolysates. PLoS ONE 13(7):e0200021. https://doi.org/10.1371/journal.pone.0200021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tukenmez U, Aktas B, Aslim B, Yavuz S (2019) The relationship between the structural characteristics of lactobacilli-EPS and its ability to induce apoptosis in colon cancer cells in vitro. Sci Rep 9(1):8268. https://doi.org/10.1038/s41598-019-44753-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wei Y, Li F, Li L, Huang L, Li Q (2019) Genetic and biochemical characterization of an exopolysaccharide with in vitro antitumoral activity produced by Lactobacillus fermentum YL-11. Front Microbiol 10:2898. https://doi.org/10.3389/fmicb.2019.02898

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kwasniewski W, Wolun-Cholewa M, Kotarski J, Warchol W, Kuzma D, Kwasniewska A, Gozdzicka-Jozefiak A (2018) Microbiota dysbiosis is associated with HPV-induced cervical carcinogenesis. Oncol Lett 16(6):7035–7047. https://doi.org/10.3892/ol.2018.9509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gugliandolo C, Spanò A, Maugeri TL, Poli A, Arena A, Nicolaus B (2015) Role of bacterial exopolysaccharides as agents in counteracting immune disorders induced by herpes virus. Microorganisms 3(3):464–483. https://doi.org/10.3390/microorganisms3030464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Biliavska L, Pankivska Y, Povnitsa O, Zagorodnya S (2019) Antiviral activity of exopolysaccharides produced by lactic acid bacteria of the genera Pediococcus, Leuconostoc and Lactobacillus against human adenovirus type 5. Medicina (Kaunas) 55(9):519. https://doi.org/10.3390/medicina55090519

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Faculty of Agriculture and the Faculty of Science of the University of Mauritius as well as the Centre for Investigative and Diagnostic Oncology of Middlesex University, London for supporting this study. The support of all the technical staff is gratefully acknowledged.

Funding

This work was supported by the University of Mauritius [Grant number Q0117].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aadil Ahmad Aullybux.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file (DOCX 73 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aullybux, A.A., Puchooa, D., Bahorun, T. et al. Antioxidant and Cytotoxic Activities of Exopolysaccharides from Alcaligenes faecalis Species Isolated from the Marine Environment of Mauritius. J Polym Environ 30, 1462–1477 (2022). https://doi.org/10.1007/s10924-021-02290-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02290-4

Keywords

Navigation